| File: | sprt.c |
| Warning: | line 1207, column 9 Value stored to 'parms' is never read |
| 1 | /* |
| 2 | * SpanDSP - a series of DSP components for telephony |
| 3 | * |
| 4 | * sprt.c - An implementation of the SPRT protocol defined in V.150.1 |
| 5 | * Annex B, less the packet exchange part |
| 6 | * |
| 7 | * Written by Steve Underwood <steveu@coppice.org> |
| 8 | * |
| 9 | * Copyright (C) 2022 Steve Underwood |
| 10 | * |
| 11 | * All rights reserved. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License version 2, as |
| 15 | * published by the Free Software Foundation. |
| 16 | * |
| 17 | * This program is distributed in the hope that it will be useful, |
| 18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 20 | * GNU General Public License for more details. |
| 21 | * |
| 22 | * You should have received a copy of the GNU General Public License |
| 23 | * along with this program; if not, write to the Free Software |
| 24 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 25 | */ |
| 26 | |
| 27 | #if defined(HAVE_CONFIG_H1) |
| 28 | #include "config.h" |
| 29 | #endif |
| 30 | |
| 31 | #include <stdio.h> |
| 32 | #include <stdlib.h> |
| 33 | #include <sys/types.h> |
| 34 | #include <inttypes.h> |
| 35 | #include <memory.h> |
| 36 | #if defined(HAVE_STDBOOL_H1) |
| 37 | #include <stdbool.h> |
| 38 | #else |
| 39 | #include <spandsp/stdbool.h> |
| 40 | #endif |
| 41 | |
| 42 | #define SPANDSP_FULLY_DEFINE_SPRT_STATE_T |
| 43 | #include "spandsp/telephony.h" |
| 44 | #include "spandsp/alloc.h" |
| 45 | #include "spandsp/unaligned.h" |
| 46 | #include "spandsp/logging.h" |
| 47 | #include "spandsp/async.h" |
| 48 | #include "spandsp/sprt.h" |
| 49 | |
| 50 | #include "spandsp/private/logging.h" |
| 51 | #include "spandsp/private/sprt.h" |
| 52 | |
| 53 | /* V.150.1 consists of |
| 54 | V.150.1 (01/03) |
| 55 | The main spec |
| 56 | V.150.1 (2003) Corrigendum 1 (07/03) |
| 57 | This was merged into the spec, and so is irrelevant |
| 58 | V.150.1 (2003) Corrigendum 2 (03/04) |
| 59 | Fixes Table 15, Annex E.1, Annex E.1.4, E.1.5, E.2.3 |
| 60 | V.150.1 (2003) Amendment 1 (01/05) |
| 61 | Additions to Table 12 for VBD and ToIP |
| 62 | V.150.1 (2003) Amendment 2 (05/06) |
| 63 | These are mostly ToIP and VBD changes. |
| 64 | Additions/changes to 2, 3.2, 10, 15.3, 15.4, Table 16, 15.4.1, |
| 65 | 15.4.5, 15.4.11.8, 15.4.11.9, 15.4.11.10, 17, 18, 19, C.2.5, |
| 66 | C.2.6, C.3, C.5.2, C.5.3, C.5.5, Annex D, Appendix IV |
| 67 | */ |
| 68 | |
| 69 | static struct |
| 70 | { |
| 71 | uint16_t min_payload_bytes; |
| 72 | uint16_t max_payload_bytes; |
| 73 | uint16_t min_window_size; |
| 74 | uint16_t max_window_size; |
| 75 | } channel_parm_limits[SPRT_CHANNELS4] = |
| 76 | { |
| 77 | { |
| 78 | SPRT_MIN_TC0_PAYLOAD_BYTES140, |
| 79 | SPRT_MAX_TC0_PAYLOAD_BYTES256, |
| 80 | 1, |
| 81 | 1 |
| 82 | }, |
| 83 | { |
| 84 | SPRT_MIN_TC1_PAYLOAD_BYTES132, |
| 85 | SPRT_MAX_TC1_PAYLOAD_BYTES256, |
| 86 | SPRT_MIN_TC1_WINDOWS_SIZE32, |
| 87 | SPRT_MAX_TC1_WINDOWS_SIZE96 |
| 88 | }, |
| 89 | { |
| 90 | SPRT_MIN_TC2_PAYLOAD_BYTES132, |
| 91 | SPRT_MAX_TC2_PAYLOAD_BYTES256, |
| 92 | SPRT_MIN_TC2_WINDOWS_SIZE8, |
| 93 | SPRT_MAX_TC2_WINDOWS_SIZE32 |
| 94 | }, |
| 95 | { |
| 96 | SPRT_MIN_TC3_PAYLOAD_BYTES140, |
| 97 | SPRT_MAX_TC3_PAYLOAD_BYTES256, |
| 98 | 1, |
| 99 | 1 |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | static channel_parms_t default_channel_parms[SPRT_CHANNELS4] = |
| 104 | { |
| 105 | { |
| 106 | SPRT_DEFAULT_TC0_PAYLOAD_BYTES140, |
| 107 | 1, |
| 108 | -1, |
| 109 | -1, |
| 110 | -1 |
| 111 | }, |
| 112 | { |
| 113 | SPRT_DEFAULT_TC1_PAYLOAD_BYTES132, |
| 114 | SPRT_DEFAULT_TC1_WINDOWS_SIZE32, |
| 115 | SPRT_DEFAULT_TIMER_TC1_TA0190000, |
| 116 | SPRT_DEFAULT_TIMER_TC1_TA02130000, |
| 117 | SPRT_DEFAULT_TIMER_TC1_TR03500000 |
| 118 | }, |
| 119 | { |
| 120 | SPRT_DEFAULT_TC2_PAYLOAD_BYTES132, |
| 121 | SPRT_DEFAULT_TC2_WINDOWS_SIZE8, |
| 122 | SPRT_DEFAULT_TIMER_TC2_TA01900000, |
| 123 | SPRT_DEFAULT_TIMER_TC2_TA02500000, |
| 124 | SPRT_DEFAULT_TIMER_TC2_TR03500000 |
| 125 | }, |
| 126 | { |
| 127 | SPRT_DEFAULT_TC3_PAYLOAD_BYTES140, |
| 128 | 1, |
| 129 | -1, |
| 130 | -1, |
| 131 | -1 |
| 132 | } |
| 133 | }; |
| 134 | |
| 135 | SPAN_DECLARE(const char *)__attribute__((visibility("default"))) const char * sprt_transmission_channel_to_str(int channel) |
| 136 | { |
| 137 | const char *res; |
| 138 | |
| 139 | res = "unknown"; |
| 140 | switch (channel) |
| 141 | { |
| 142 | case SPRT_TCID_UNRELIABLE_UNSEQUENCED: |
| 143 | res = "unreliable unsequenced"; |
| 144 | break; |
| 145 | case SPRT_TCID_RELIABLE_SEQUENCED: |
| 146 | res = "reliable sequenced"; |
| 147 | break; |
| 148 | case SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED: |
| 149 | res = "expedited reliable sequenced"; |
| 150 | break; |
| 151 | case SPRT_TCID_UNRELIABLE_SEQUENCED: |
| 152 | res = "unreliable sequenced"; |
| 153 | break; |
| 154 | } |
| 155 | /*endswitch*/ |
| 156 | return res; |
| 157 | } |
| 158 | /*- End of function --------------------------------------------------------*/ |
| 159 | |
| 160 | static int update_timer(sprt_state_t *s) |
| 161 | { |
| 162 | span_timestamp_t shortest; |
| 163 | uint8_t first; |
| 164 | int i; |
| 165 | int shortest_is; |
| 166 | |
| 167 | if (s->tx.immediate_timer) |
| 168 | { |
| 169 | shortest = 1; |
| 170 | shortest_is = 4; |
| 171 | } |
| 172 | else |
| 173 | { |
| 174 | /* Find the earliest expiring of the active timers, and set the timeout to that. */ |
| 175 | shortest = ~0; |
| 176 | shortest_is = 0; |
| 177 | /* There's a single ACK holdoff timer */ |
| 178 | if (s->tx.ta01_timer != 0 && s->tx.ta01_timer < shortest) |
| 179 | { |
| 180 | shortest = s->tx.ta01_timer; |
| 181 | shortest_is = 1; |
| 182 | } |
| 183 | /*endif*/ |
| 184 | for (i = SPRT_TCID_MIN_RELIABLE; i <= SPRT_TCID_MAX_RELIABLE; i++) |
| 185 | { |
| 186 | /* There's a keepalive timer for each reliable channel. These are only active |
| 187 | after the channel is used for the first time, and stay active until shutdown. */ |
| 188 | if (s->tx.chan[i].ta02_timer != 0 && s->tx.chan[i].ta02_timer < shortest) |
| 189 | { |
| 190 | shortest = s->tx.chan[i].ta02_timer; |
| 191 | shortest_is = 2 + 10*i; |
| 192 | } |
| 193 | /*endif*/ |
| 194 | /* There are per slot timers for all the buffer slots for a reliable channel, but they are |
| 195 | sorted, so we already know which is the sortest one. */ |
| 196 | if ((first = s->tx.chan[i].first_in_time) != TR03_QUEUE_FREE_SLOT_TAG0xFFU) |
| 197 | { |
| 198 | if (s->tx.chan[i].tr03_timer[first] != 0 && s->tx.chan[i].tr03_timer[first] < shortest) |
| 199 | { |
| 200 | shortest = s->tx.chan[i].tr03_timer[first]; |
| 201 | shortest_is = 3 + 10*i; |
| 202 | } |
| 203 | /*endif*/ |
| 204 | } |
| 205 | /*endif*/ |
| 206 | } |
| 207 | /*endfor*/ |
| 208 | /* If we haven't shrunk shortest from maximum, we have no timer to set, so we stop the timer, |
| 209 | if its set. */ |
| 210 | if (shortest == ~0) |
| 211 | shortest = 0; |
| 212 | /*endif*/ |
| 213 | } |
| 214 | /*endif*/ |
| 215 | span_log(&s->logging, SPAN_LOG_FLOW, "Update timer to %lu (%d)\n", shortest, shortest_is); |
| 216 | if (s->timer_handler) |
| 217 | s->timer_handler(s->timer_user_data, shortest); |
| 218 | /*endif*/ |
| 219 | return 0; |
| 220 | } |
| 221 | /*- End of function --------------------------------------------------------*/ |
| 222 | |
| 223 | static void delete_timer_queue_entry(sprt_state_t *s, int channel, int slot) |
| 224 | { |
| 225 | if (s->tx.chan[channel].first_in_time == TR03_QUEUE_FREE_SLOT_TAG0xFFU || slot == TR03_QUEUE_FREE_SLOT_TAG0xFFU) |
| 226 | return; |
| 227 | /*endif*/ |
| 228 | |
| 229 | if (s->tx.chan[channel].first_in_time == slot) |
| 230 | { |
| 231 | /* Delete from the head of the list */ |
| 232 | s->tx.chan[channel].first_in_time = s->tx.chan[channel].next_in_time[slot]; |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | s->tx.chan[channel].next_in_time[s->tx.chan[channel].prev_in_time[slot]] = s->tx.chan[channel].next_in_time[slot]; |
| 237 | } |
| 238 | /*endif*/ |
| 239 | |
| 240 | if (s->tx.chan[channel].last_in_time == slot) |
| 241 | { |
| 242 | /* Delete from the end of the list */ |
| 243 | s->tx.chan[channel].last_in_time = s->tx.chan[channel].prev_in_time[slot]; |
| 244 | } |
| 245 | else |
| 246 | { |
| 247 | s->tx.chan[channel].prev_in_time[s->tx.chan[channel].next_in_time[slot]] = s->tx.chan[channel].prev_in_time[slot]; |
| 248 | } |
| 249 | /*endif*/ |
| 250 | |
| 251 | s->tx.chan[channel].prev_in_time[slot] = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 252 | s->tx.chan[channel].next_in_time[slot] = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 253 | } |
| 254 | /*- End of function --------------------------------------------------------*/ |
| 255 | |
| 256 | static void add_timer_queue_last_entry(sprt_state_t *s, int channel, int slot) |
| 257 | { |
| 258 | if (s->tx.chan[channel].last_in_time == TR03_QUEUE_FREE_SLOT_TAG0xFFU) |
| 259 | { |
| 260 | /* The list is empty, so link both ways */ |
| 261 | s->tx.chan[channel].first_in_time = slot; |
| 262 | } |
| 263 | else |
| 264 | { |
| 265 | s->tx.chan[channel].next_in_time[s->tx.chan[channel].last_in_time] = slot; |
| 266 | } |
| 267 | /*endif*/ |
| 268 | s->tx.chan[channel].prev_in_time[slot] = s->tx.chan[channel].last_in_time; |
| 269 | s->tx.chan[channel].next_in_time[slot] = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 270 | s->tx.chan[channel].last_in_time = slot; |
| 271 | } |
| 272 | /*- End of function --------------------------------------------------------*/ |
| 273 | |
| 274 | static int build_and_send_packet(sprt_state_t *s, |
| 275 | int channel, |
| 276 | uint16_t seq_no, |
| 277 | const uint8_t payload[], |
| 278 | int payload_len) |
| 279 | { |
| 280 | int i; |
| 281 | int len; |
| 282 | int noa; |
| 283 | uint8_t pkt[SPRT_MAX_PACKET_BYTES(12 + 256)]; |
| 284 | |
| 285 | pkt[0] = s->tx.subsession_id; |
| 286 | pkt[1] = s->tx.payload_type; |
| 287 | put_net_unaligned_uint16(&pkt[2], (channel << 14) | (seq_no & SPRT_SEQ_NO_MASK0x3FFF)); |
| 288 | /* The header is of variable length, depending how many of the zero to three acknowledgement |
| 289 | slots are in use */ |
| 290 | len = 6; |
| 291 | noa = 0; |
| 292 | if (s->tx.ack_queue_ptr > 0) |
| 293 | { |
| 294 | for (i = 0; i < s->tx.ack_queue_ptr; i++) |
| 295 | { |
| 296 | put_net_unaligned_uint16(&pkt[len], s->tx.ack_queue[i]); |
| 297 | len += 2; |
| 298 | noa++; |
| 299 | } |
| 300 | /*endfor*/ |
| 301 | s->tx.ack_queue_ptr = 0; |
| 302 | s->tx.ta01_timer = 0; |
| 303 | } |
| 304 | /*endif*/ |
| 305 | /* The base sequence number only varies for the reliable channels. It is always zero |
| 306 | for the unrelaible channels. */ |
| 307 | put_net_unaligned_uint16(&pkt[4], (noa << 14) | s->rx.chan[channel].base_sequence_no); |
| 308 | /* If this is purely an acknowledgement packet, there will be no actual message */ |
| 309 | if (payload_len > 0) |
| 310 | { |
| 311 | memcpy(&pkt[len], payload, payload_len); |
| 312 | len += payload_len; |
| 313 | } |
| 314 | /*endif*/ |
| 315 | if (s->tx_packet_handler) |
| 316 | s->tx_packet_handler(s->tx_user_data, pkt, len); |
| 317 | /*endif*/ |
| 318 | update_timer(s); |
| 319 | return len; |
| 320 | } |
| 321 | /*- End of function --------------------------------------------------------*/ |
| 322 | |
| 323 | static int queue_acknowledgement(sprt_state_t *s, int channel, uint16_t sequence_no) |
| 324 | { |
| 325 | uint16_t entry; |
| 326 | bool_Bool found; |
| 327 | int i; |
| 328 | |
| 329 | if (s->tx.ack_queue_ptr >= 3) |
| 330 | { |
| 331 | /* The ack queue is already full. This should never happen. It is an internal error |
| 332 | in this software. */ |
| 333 | span_log(&s->logging, SPAN_LOG_ERROR, "ACK queue overflow\n"); |
| 334 | /* I guess push out the queued ACKs at this point is better than the alternatives */ |
| 335 | build_and_send_packet(s, channel, 0, NULL((void*)0), 0); |
| 336 | } |
| 337 | /*endif*/ |
| 338 | entry = (channel << 14) | sequence_no; |
| 339 | /* See if we have already queued a response for this sequence number. If the other end |
| 340 | likes to send its packets in repeating bursts this may happen. */ |
| 341 | found = false0; |
| 342 | for (i = 0; i < s->tx.ack_queue_ptr; i++) |
| 343 | { |
| 344 | if (s->tx.ack_queue[i] == entry) |
| 345 | { |
| 346 | found = true1; |
| 347 | break; |
| 348 | } |
| 349 | /*endif*/ |
| 350 | } |
| 351 | /*endfor*/ |
| 352 | if (!found) |
| 353 | { |
| 354 | s->tx.ack_queue[s->tx.ack_queue_ptr] = entry; |
| 355 | s->tx.ack_queue_ptr++; |
| 356 | if (s->tx.ack_queue_ptr == 1) |
| 357 | { |
| 358 | /* We now have something in the queue. We need to start the timer that will push out |
| 359 | a partially filled acknowledgement queue if nothing else triggers transmission. */ |
| 360 | if (s->timer_handler) |
| 361 | s->tx.ta01_timer = s->timer_handler(s->timer_user_data, ~0) + s->tx.ta01_timeout; |
| 362 | /*endif*/ |
| 363 | span_log(&s->logging, SPAN_LOG_ERROR, "TA01 set to %lu\n", s->tx.ta01_timer); |
| 364 | update_timer(s); |
| 365 | } |
| 366 | else if (s->tx.ack_queue_ptr >= 3) |
| 367 | { |
| 368 | /* The ACK queue is now full, so push an ACK only packet to clear it. */ |
| 369 | build_and_send_packet(s, channel, 0, NULL((void*)0), 0); |
| 370 | } |
| 371 | /*endif*/ |
| 372 | } |
| 373 | /*endif*/ |
| 374 | return 0; |
| 375 | } |
| 376 | /*- End of function --------------------------------------------------------*/ |
| 377 | |
| 378 | static bool_Bool retransmit_the_unacknowledged(sprt_state_t *s, int channel, span_timestamp_t now) |
| 379 | { |
| 380 | uint8_t first; |
| 381 | sprt_chan_t *chan; |
| 382 | bool_Bool something_was_sent; |
| 383 | int diff; |
| 384 | uint16_t seq_no; |
| 385 | |
| 386 | something_was_sent = false0; |
| 387 | if (channel >= SPRT_TCID_MIN_RELIABLE && channel <= SPRT_TCID_MAX_RELIABLE) |
| 388 | { |
| 389 | chan = &s->tx.chan[channel]; |
| 390 | while ((first = chan->first_in_time) != TR03_QUEUE_FREE_SLOT_TAG0xFFU |
| 391 | && |
| 392 | chan->tr03_timer[first] <= now) |
| 393 | { |
| 394 | diff = chan->buff_in_ptr - first; |
| 395 | if (diff < 0) |
| 396 | diff += chan->window_size; |
| 397 | /*endif*/ |
| 398 | seq_no = chan->queuing_sequence_no - diff; |
| 399 | if (chan->buff_len[first] != SPRT_LEN_SLOT_FREE0xFFFF) |
| 400 | { |
| 401 | build_and_send_packet(s, |
| 402 | channel, |
| 403 | seq_no, |
| 404 | &chan->buff[first*chan->max_payload_bytes], |
| 405 | chan->buff_len[first]); |
| 406 | something_was_sent = true1; |
| 407 | } |
| 408 | else |
| 409 | { |
| 410 | span_log(&s->logging, SPAN_LOG_ERROR, "ERROR: empty slot scheduled %d %d\n", first, chan->buff_len[first]); |
| 411 | } |
| 412 | /*endif*/ |
| 413 | delete_timer_queue_entry(s, channel, first); |
| 414 | chan->remaining_tries[first]--; |
| 415 | if (chan->remaining_tries[first] <= 0) |
| 416 | { |
| 417 | /* TODO: take action on too many retries */ |
| 418 | if (s->status_handler) |
| 419 | s->status_handler(s->status_user_data, /* TODO: */ 1235); |
| 420 | /*endif*/ |
| 421 | } |
| 422 | else |
| 423 | { |
| 424 | /* Update the timestamp, and requeue the packet */ |
| 425 | chan->tr03_timer[first] += chan->tr03_timeout; |
| 426 | add_timer_queue_last_entry(s, channel, first); |
| 427 | } |
| 428 | /*endif*/ |
| 429 | } |
| 430 | /*endif*/ |
| 431 | } |
| 432 | /*endif*/ |
| 433 | return something_was_sent; |
| 434 | } |
| 435 | /*- End of function --------------------------------------------------------*/ |
| 436 | |
| 437 | static void process_acknowledgements(sprt_state_t *s, int noa, int tcn[3], int sqn[3]) |
| 438 | { |
| 439 | int i; |
| 440 | int slot; |
| 441 | int ptr; |
| 442 | int diff; |
| 443 | int channel; |
| 444 | sprt_chan_t *chan; |
| 445 | |
| 446 | /* Process the set of 1 to 3 acknowledgements from a received SPRT packet */ |
| 447 | if (noa > 0) |
| 448 | span_log(&s->logging, SPAN_LOG_FLOW, "Received %d acknowledgements\n", noa); |
| 449 | /*endif*/ |
| 450 | for (i = 0; i < noa; i++) |
| 451 | { |
| 452 | channel = tcn[i]; |
| 453 | span_log(&s->logging, SPAN_LOG_FLOW, "ACK received for channel %s, seq no %d\n", sprt_transmission_channel_to_str(tcn[i]), sqn[i]); |
| 454 | chan = &s->tx.chan[channel]; |
| 455 | switch (channel) |
| 456 | { |
| 457 | case SPRT_TCID_RELIABLE_SEQUENCED: |
| 458 | case SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED: |
| 459 | diff = (chan->queuing_sequence_no - sqn[i]) & SPRT_SEQ_NO_MASK0x3FFF; |
| 460 | if (diff < chan->window_size) |
| 461 | { |
| 462 | /* Find this sequence no in the buffer */ |
| 463 | slot = chan->buff_in_ptr - diff; |
| 464 | if (slot < 0) |
| 465 | slot += chan->window_size; |
| 466 | /*endif*/ |
| 467 | if (chan->buff_len[slot] != SPRT_LEN_SLOT_FREE0xFFFF) |
| 468 | { |
| 469 | /* This packet is no longer needed. We can clear the buffer slot. */ |
| 470 | span_log(&s->logging, SPAN_LOG_FLOW, "Slot OK %d/%d contains %d [%d, %d]\n", channel, slot, sqn[i], chan->queuing_sequence_no, chan->buff_in_ptr); |
| 471 | chan->buff_len[slot] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 472 | delete_timer_queue_entry(s, channel, slot); |
| 473 | ptr = chan->buff_acked_out_ptr; |
| 474 | if (slot == ptr) |
| 475 | { |
| 476 | /* This is the next packet in sequence to be delivered. So, we can now drop it, and |
| 477 | anything following which may have already been ACKed, until we reach something |
| 478 | which has not been ACKed, or we have emptied the buffer. */ |
| 479 | do |
| 480 | { |
| 481 | if (++ptr >= chan->window_size) |
| 482 | ptr = 0; |
| 483 | /*endif*/ |
| 484 | } |
| 485 | while (ptr != chan->buff_in_ptr && chan->buff_len[ptr] == SPRT_LEN_SLOT_FREE0xFFFF); |
| 486 | chan->buff_acked_out_ptr = ptr; |
| 487 | } |
| 488 | /*endif*/ |
| 489 | } |
| 490 | else |
| 491 | { |
| 492 | /* This slot might be free, because we received an ACK already (e.g. if we got a late ACK |
| 493 | after sending a retransmission, and now we have the ACK from the retransmission). This |
| 494 | can be ignored. |
| 495 | The slot might have a new sequence number in it, and we are getting a late ACK for the |
| 496 | sequence number it contained before. It should be best to ignore this too. */ |
| 497 | span_log(&s->logging, SPAN_LOG_FLOW, "Slot BAD %d/%d does not contain %d [%d, %d]\n", channel, slot, sqn[i], chan->queuing_sequence_no, chan->buff_in_ptr); |
| 498 | } |
| 499 | /*endif*/ |
| 500 | } |
| 501 | else |
| 502 | { |
| 503 | /* This slot might be free, because we received an ACK already (e.g. if we got a late ACK |
| 504 | after sending a retransmission, and now we have the ACK from the retransmission). This |
| 505 | can be ignored. |
| 506 | The slot might have a new sequence number in it, and we are getting a late ACK for the |
| 507 | sequence number it contained before. It should be best to ignore this too. */ |
| 508 | span_log(&s->logging, SPAN_LOG_FLOW, "Slot BAD %d This is an ack for something outside the current window - %d %d\n", channel, chan->queuing_sequence_no, sqn[i]); |
| 509 | } |
| 510 | /*endif*/ |
| 511 | break; |
| 512 | case SPRT_TCID_UNRELIABLE_UNSEQUENCED: |
| 513 | case SPRT_TCID_UNRELIABLE_SEQUENCED: |
| 514 | /* Getting here means we have an acknowledgement for an unreliable packet. This should never happen. The received packet has a problem. */ |
| 515 | span_log(&s->logging, |
| 516 | SPAN_LOG_FLOW, |
| 517 | "Acknowledgement received for unreliable channel %s\n", |
| 518 | sprt_transmission_channel_to_str(channel)); |
| 519 | break; |
| 520 | } |
| 521 | /*endswitch*/ |
| 522 | } |
| 523 | /*endfor*/ |
| 524 | } |
| 525 | /*- End of function --------------------------------------------------------*/ |
| 526 | |
| 527 | static int sprt_deliver(sprt_state_t *s) |
| 528 | { |
| 529 | int i; |
| 530 | int channel; |
| 531 | uint16_t base_sequence_no; |
| 532 | uint16_t sequence_no; |
| 533 | int iptr; |
| 534 | int diff; |
| 535 | sprt_chan_t *chan; |
| 536 | |
| 537 | for (channel = SPRT_TCID_MIN_RELIABLE; channel <= SPRT_TCID_MAX_RELIABLE; channel++) |
| 538 | { |
| 539 | chan = &s->rx.chan[channel]; |
| 540 | iptr = chan->buff_in_ptr; |
| 541 | while (chan->buff_len[iptr] != SPRT_LEN_SLOT_FREE0xFFFF) |
| 542 | { |
| 543 | /* We need to check for busy before delivering each packet, in case the app applied |
| 544 | flow control between packets. */ |
| 545 | if (chan->busy) |
| 546 | break; |
| 547 | /*endif*/ |
| 548 | /* Deliver the body of the message */ |
| 549 | if (s->rx_delivery_handler) |
| 550 | s->rx_delivery_handler(s->rx_user_data, channel, chan->base_sequence_no, &chan->buff[iptr*chan->max_payload_bytes], chan->buff_len[iptr]); |
| 551 | /*endif*/ |
| 552 | chan->base_sequence_no = (chan->base_sequence_no + 1) & SPRT_SEQ_NO_MASK0x3FFF; |
| 553 | chan->buff_len[iptr] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 554 | if (++iptr >= chan->window_size) |
| 555 | iptr = 0; |
| 556 | /*endif*/ |
| 557 | } |
| 558 | /*endwhile*/ |
| 559 | /* Only change the pointer now we have really finished. */ |
| 560 | chan->buff_in_ptr = iptr; |
| 561 | } |
| 562 | /*endfor*/ |
| 563 | } |
| 564 | /*- End of function --------------------------------------------------------*/ |
| 565 | |
| 566 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_timer_expired(sprt_state_t *s, span_timestamp_t now) |
| 567 | { |
| 568 | int i; |
| 569 | bool_Bool something_was_sent_for_channel; |
| 570 | bool_Bool something_was_sent; |
| 571 | |
| 572 | span_log(&s->logging, SPAN_LOG_FLOW, "Timer expired at %lu\n", now); |
| 573 | |
| 574 | something_was_sent = false0; |
| 575 | |
| 576 | if (s->tx.immediate_timer) |
| 577 | { |
| 578 | s->tx.immediate_timer = false0; |
| 579 | sprt_deliver(s); |
| 580 | } |
| 581 | /*endif*/ |
| 582 | |
| 583 | for (i = SPRT_TCID_MIN_RELIABLE; i <= SPRT_TCID_MAX_RELIABLE; i++) |
| 584 | { |
| 585 | something_was_sent_for_channel = retransmit_the_unacknowledged(s, i, now); |
| 586 | /* There's a keepalive timer for each reliable channel. We only need to send a keepalive if we |
| 587 | didn't just send a retransmit for this channel. */ |
| 588 | if (s->tx.chan[i].ta02_timer != 0 && s->tx.chan[i].ta02_timer <= now) |
| 589 | { |
| 590 | if (!something_was_sent_for_channel) |
| 591 | { |
| 592 | /* Send a keepalive packet for this channel. */ |
| 593 | span_log(&s->logging, SPAN_LOG_FLOW, "Keepalive only packet sent\n"); |
| 594 | build_and_send_packet(s, i, 0, NULL((void*)0), 0); |
| 595 | something_was_sent_for_channel = true1; |
| 596 | } |
| 597 | /*endif*/ |
| 598 | s->tx.chan[i].ta02_timer = now + s->tx.chan[i].ta02_timeout; |
| 599 | span_log(&s->logging, SPAN_LOG_FLOW, "TA02(%d) set to %lu\n", i, s->tx.chan[i].ta02_timer); |
| 600 | } |
| 601 | /*endif*/ |
| 602 | if (something_was_sent_for_channel) |
| 603 | something_was_sent = true1; |
| 604 | /*endif*/ |
| 605 | } |
| 606 | /*endfor*/ |
| 607 | /* There's a single ACK holdoff timer, which applies to all channels. */ |
| 608 | /* We only need to push ACKs if we haven't yet pushed out a packet for any channel during this |
| 609 | timer expired processing. */ |
| 610 | if (!something_was_sent && s->tx.ta01_timer != 0 && s->tx.ta01_timer <= now) |
| 611 | { |
| 612 | /* Push any outstanding ACKs and we are done. We don't need to start a new timing operation. */ |
| 613 | if (s->tx.ack_queue_ptr > 0) |
| 614 | { |
| 615 | /* Push an ACK only packet */ |
| 616 | span_log(&s->logging, SPAN_LOG_FLOW, "ACK only packet sent\n"); |
| 617 | build_and_send_packet(s, SPRT_TCID_UNRELIABLE_UNSEQUENCED, 0, NULL((void*)0), 0); |
| 618 | s->tx.ta01_timer = 0; |
| 619 | something_was_sent = true1; |
| 620 | } |
| 621 | /*endif*/ |
| 622 | } |
| 623 | /*endif*/ |
| 624 | if (something_was_sent) |
| 625 | update_timer(s); |
| 626 | /*endif*/ |
| 627 | return 0; |
| 628 | } |
| 629 | /*- End of function --------------------------------------------------------*/ |
| 630 | |
| 631 | static void sprt_rx_reinit(sprt_state_t *s) |
| 632 | { |
| 633 | /* TODO */ |
| 634 | } |
| 635 | /*- End of function --------------------------------------------------------*/ |
| 636 | |
| 637 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_rx_packet(sprt_state_t *s, const uint8_t pkt[], int len) |
| 638 | { |
| 639 | int i; |
| 640 | int header_extension_bit; |
| 641 | int subsession_id; |
| 642 | int reserved_bit; |
| 643 | int payload_type; |
| 644 | int channel; |
| 645 | uint16_t base_sequence_no; |
| 646 | uint16_t sequence_no; |
| 647 | int noa; |
| 648 | int tcn[3]; |
| 649 | int sqn[3]; |
| 650 | int header_len; |
| 651 | int payload_len; |
| 652 | int iptr; |
| 653 | int diff; |
| 654 | sprt_chan_t *chan; |
| 655 | |
| 656 | /* An SPRT packet has 3 essential components: A base sequence number, some ACKs and a payload. |
| 657 | - A packet with no ACKs or payload is a keepalive. Its there to report the continued existance |
| 658 | of the far end, and to report the far end's base sequence number for a reliable channel. |
| 659 | - A packet with ACKs and no payload performs the above, and also ACKs one or more reliable |
| 660 | packets in the other direction. |
| 661 | - A packet with a payload does all of the above, with some data as well. There might be zero |
| 662 | things to ACK. */ |
| 663 | if (len < 6) |
| 664 | { |
| 665 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx packet too short\n"); |
| 666 | return -1; |
| 667 | } |
| 668 | /*endif*/ |
| 669 | header_extension_bit = (pkt[0] >> 7) & 1; |
| 670 | reserved_bit = (pkt[1] >> 7) & 1; |
| 671 | subsession_id = pkt[0] & 0x7F; |
| 672 | payload_type = pkt[1] & 0x7F; |
| 673 | |
| 674 | if (header_extension_bit != 0 || reserved_bit != 0) |
| 675 | { |
| 676 | /* This doesn't look like an SPRT packet */ |
| 677 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx packet header does not look like SPRT\n"); |
| 678 | return -1; |
| 679 | } |
| 680 | /*endif*/ |
| 681 | if (payload_type != s->rx.payload_type) |
| 682 | { |
| 683 | /* This is not the payload type we are looking for */ |
| 684 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx payload type %d, expected %d\n", payload_type, s->rx.payload_type); |
| 685 | return -1; |
| 686 | } |
| 687 | /*endif*/ |
| 688 | if (s->rx.subsession_id < 0) |
| 689 | { |
| 690 | /* This is the first subsession ID we have seen, so accept it going forwards as the |
| 691 | subsession ID to be expected for future packets. The spec says the IDs start at zero, |
| 692 | so if both sides started up together the subsession ID on both sides should probably be |
| 693 | in sync, but is this guaranteed? Should the subsession ID we send match the one we |
| 694 | receive? */ |
| 695 | s->rx.subsession_id = subsession_id; |
| 696 | } |
| 697 | else |
| 698 | { |
| 699 | if (subsession_id != s->rx.subsession_id) |
| 700 | { |
| 701 | /* This doesn't look good. We have a new subsession ID. The payload type field check out |
| 702 | OK. What other integrity checks can we make, to check we are seeing sane packets from |
| 703 | a new subsession ID, rather than garbage? */ |
| 704 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx subsession ID %d, expected %d\n", subsession_id, s->rx.subsession_id); |
| 705 | if (s->status_handler) |
| 706 | s->status_handler(s->status_user_data, /* TODO: */ 1234); |
| 707 | /*endif*/ |
| 708 | sprt_rx_reinit(s); |
| 709 | return -1; |
| 710 | } |
| 711 | /*endif*/ |
| 712 | } |
| 713 | /*endif*/ |
| 714 | /* The packet's framework looks OK, so let's process its contents */ |
| 715 | channel = (pkt[2] >> 6) & 3; |
| 716 | sequence_no = get_net_unaligned_uint16(&pkt[2]) & SPRT_SEQ_NO_MASK0x3FFF; |
| 717 | noa = (pkt[4] >> 6) & 3; |
| 718 | chan = &s->rx.chan[channel]; |
| 719 | |
| 720 | /* Deal with the keepalive and base sequence no reporting aspects of the packet */ |
| 721 | base_sequence_no = get_net_unaligned_uint16(&pkt[4]) & SPRT_SEQ_NO_MASK0x3FFF; |
| 722 | if (s->tx.chan[channel].busy) |
| 723 | { |
| 724 | if (s->tx.chan[channel].base_sequence_no != base_sequence_no) |
| 725 | span_log(&s->logging, SPAN_LOG_FLOW, "BSN for channel %d changed from %u to %u\n", channel, s->tx.chan[channel].base_sequence_no, base_sequence_no); |
| 726 | /*endif*/ |
| 727 | } |
| 728 | /*endif*/ |
| 729 | s->tx.chan[channel].base_sequence_no = base_sequence_no; |
| 730 | /* TODO: record the time the channel was last seen. */ |
| 731 | |
| 732 | /* Deal with the ACKs that might be present in the packet */ |
| 733 | header_len = 6; |
| 734 | if (noa > 0) |
| 735 | { |
| 736 | /* There are some ACKs to process. */ |
| 737 | if (len < 6 + 2*noa) |
| 738 | { |
| 739 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx packet too short\n"); |
| 740 | return -1; |
| 741 | } |
| 742 | /*endif*/ |
| 743 | for (i = 0; i < noa; i++) |
| 744 | { |
| 745 | tcn[i] = (pkt[header_len] >> 6) & 3; |
| 746 | sqn[i] = get_net_unaligned_uint16(&pkt[header_len]) & SPRT_SEQ_NO_MASK0x3FFF; |
| 747 | header_len += 2; |
| 748 | } |
| 749 | /*endfor*/ |
| 750 | process_acknowledgements(s, noa, tcn, sqn); |
| 751 | } |
| 752 | /*endif*/ |
| 753 | span_log(&s->logging, SPAN_LOG_FLOW, "Rx %d %d %d %d - noa %d\n", channel, sequence_no, len, header_len, noa); |
| 754 | |
| 755 | /* Deal with the payload, if any, in the packet */ |
| 756 | payload_len = len - header_len; |
| 757 | /* V.150.1 says SPRT_TCID_UNRELIABLE_UNSEQUENCED should be used for ACK only packets, but in the real |
| 758 | world you should expect any of the transport channel IDs. These ACK only packets have the sequence |
| 759 | number set to zero, regardless of where the sequence number for that channel currently stands. |
| 760 | (figure B.3/V.150.1) */ |
| 761 | if (payload_len > 0) |
| 762 | { |
| 763 | if (payload_len > chan->max_payload_bytes) |
| 764 | { |
| 765 | span_log(&s->logging, SPAN_LOG_ERROR, "Payload too long %d (%d)\n", payload_len, chan->max_payload_bytes); |
| 766 | } |
| 767 | else |
| 768 | { |
| 769 | switch (channel) |
| 770 | { |
| 771 | case SPRT_TCID_RELIABLE_SEQUENCED: |
| 772 | /* Used for data */ |
| 773 | case SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED: |
| 774 | /* Used for control/signalling data */ |
| 775 | if (sequence_no == chan->base_sequence_no) |
| 776 | { |
| 777 | iptr = chan->buff_in_ptr; |
| 778 | if (chan->busy) |
| 779 | { |
| 780 | /* We can't deliver this right now, so we need to store it at the head of the buffer */ |
| 781 | memcpy(&chan->buff[iptr*chan->max_payload_bytes], pkt + header_len, payload_len); |
| 782 | chan->buff_len[iptr] = payload_len; |
| 783 | queue_acknowledgement(s, channel, sequence_no); |
| 784 | } |
| 785 | else |
| 786 | { |
| 787 | /* This is exactly the next packet in sequence, so deliver it. */ |
| 788 | if (s->rx_delivery_handler) |
| 789 | s->rx_delivery_handler(s->rx_user_data, channel, sequence_no, pkt + header_len, payload_len); |
| 790 | /*endif*/ |
| 791 | chan->base_sequence_no = (chan->base_sequence_no + 1) & SPRT_SEQ_NO_MASK0x3FFF; |
| 792 | chan->buff_len[iptr] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 793 | if (++iptr >= chan->window_size) |
| 794 | iptr = 0; |
| 795 | /*endif*/ |
| 796 | /* See if there are any contiguously following packets in the buffer, which can be delivered immediately. */ |
| 797 | while (chan->buff_len[iptr] != SPRT_LEN_SLOT_FREE0xFFFF) |
| 798 | { |
| 799 | /* We need to check for busy before delivering each packet, in case the app applied |
| 800 | flow control between packets. */ |
| 801 | if (chan->busy) |
| 802 | break; |
| 803 | /*endif*/ |
| 804 | /* Deliver the body of the message */ |
| 805 | if (s->rx_delivery_handler) |
| 806 | s->rx_delivery_handler(s->rx_user_data, channel, chan->base_sequence_no, &chan->buff[iptr*chan->max_payload_bytes], chan->buff_len[iptr]); |
| 807 | /*endif*/ |
| 808 | chan->base_sequence_no = (chan->base_sequence_no + 1) & SPRT_SEQ_NO_MASK0x3FFF; |
| 809 | chan->buff_len[iptr] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 810 | if (++iptr >= chan->window_size) |
| 811 | iptr = 0; |
| 812 | /*endif*/ |
| 813 | } |
| 814 | /*endwhile*/ |
| 815 | /* Only change the pointer now we have really finished. */ |
| 816 | chan->buff_in_ptr = iptr; |
| 817 | } |
| 818 | /*endif*/ |
| 819 | queue_acknowledgement(s, channel, sequence_no); |
| 820 | } |
| 821 | else |
| 822 | { |
| 823 | /* This packet is out of sequence, so there may have been some packets lost somewhere. If the |
| 824 | packet is older than the last delivered one it must be a repeat. If its beyond the last |
| 825 | delievered packet it might be inside or outside the window. We store it if its within the |
| 826 | window, so we can deliver it later, when we have the missing intermediate packets. If its |
| 827 | later than the window we have to drop it, as we have nowhere to store it. */ |
| 828 | /* TODO: we probably shouldn't ACK a packet we drop because its beyond the window. */ |
| 829 | diff = (sequence_no - chan->base_sequence_no) & SPRT_SEQ_NO_MASK0x3FFF; |
| 830 | if (diff < chan->window_size) |
| 831 | { |
| 832 | iptr = chan->buff_in_ptr + diff; |
| 833 | if (iptr >= chan->window_size) |
| 834 | iptr -= chan->window_size; |
| 835 | /*endif*/ |
| 836 | memcpy(&chan->buff[iptr*chan->max_payload_bytes], pkt + header_len, payload_len); |
| 837 | chan->buff_len[iptr] = payload_len; |
| 838 | queue_acknowledgement(s, channel, sequence_no); |
| 839 | } |
| 840 | else if (diff > 2*SPRT_MAX_WINDOWS_SIZE96) |
| 841 | { |
| 842 | /* This is an older packet, or something far in the future. We should acknowledge it, as |
| 843 | its probably a repeat for a packet where the far end missed the previous ACK we sent. */ |
| 844 | queue_acknowledgement(s, channel, sequence_no); |
| 845 | if (s->status_handler) |
| 846 | s->status_handler(s->status_user_data, /* TODO: */ 1236); |
| 847 | /*endif*/ |
| 848 | } |
| 849 | else |
| 850 | { |
| 851 | /* This is a little too far into the future of packets (i.e. just beyond the window). |
| 852 | We should not acknowledge it, as the far end will think we have delivered the packet. */ |
| 853 | } |
| 854 | /*endif*/ |
| 855 | } |
| 856 | /*endif*/ |
| 857 | chan->active = true1; |
| 858 | break; |
| 859 | case SPRT_TCID_UNRELIABLE_UNSEQUENCED: |
| 860 | /* Used for ack only */ |
| 861 | /* The payload length should always be zero, although it isn't if we are here. Is this |
| 862 | erroneous? Its not quite clear from the spec. */ |
| 863 | case SPRT_TCID_UNRELIABLE_SEQUENCED: |
| 864 | /* Used for sequenced data that does not require reliable delivery */ |
| 865 | /* We might have missed one or more packets, so this may or may not be the next packet in sequence. We have |
| 866 | no way to fix this, so just deliver the payload. */ |
| 867 | /* Deliver the payload of the message */ |
| 868 | if (s->rx_delivery_handler) |
| 869 | s->rx_delivery_handler(s->rx_user_data, channel, sequence_no, pkt + header_len, payload_len); |
| 870 | /*endif*/ |
| 871 | chan->active = true1; |
| 872 | break; |
| 873 | } |
| 874 | /*endswitch*/ |
| 875 | } |
| 876 | /*endif*/ |
| 877 | } |
| 878 | /*endif*/ |
| 879 | return 0; |
| 880 | } |
| 881 | /*- End of function --------------------------------------------------------*/ |
| 882 | |
| 883 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_tx(sprt_state_t *s, int channel, const uint8_t payload[], int len) |
| 884 | { |
| 885 | int real_len; |
| 886 | int iptr; |
| 887 | int optr; |
| 888 | uint16_t seq_no; |
| 889 | sprt_chan_t *chan; |
| 890 | |
| 891 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 892 | return -1; |
| 893 | /*endif*/ |
| 894 | chan = &s->tx.chan[channel]; |
| 895 | /* Is the length in range for this particular channel? */ |
| 896 | if (len <= 0 || len > chan->max_payload_bytes) |
| 897 | return -1; |
| 898 | /*endif*/ |
| 899 | switch (channel) |
| 900 | { |
| 901 | case SPRT_TCID_RELIABLE_SEQUENCED: |
| 902 | case SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED: |
| 903 | /* We need to queue this message, and set the retry timer for it, so we can handle ACKs and retransmissions. We also need to send it now. */ |
| 904 | /* Snapshot the values (although only optr should be changeable during this processing) */ |
| 905 | iptr = chan->buff_in_ptr; |
| 906 | optr = chan->buff_acked_out_ptr; |
| 907 | if ((real_len = optr - iptr - 1) < 0) |
| 908 | real_len += chan->window_size; |
| 909 | /*endif*/ |
| 910 | if (real_len < 1) |
| 911 | { |
| 912 | /* Queue full */ |
| 913 | return -1; |
| 914 | } |
| 915 | /*endif*/ |
| 916 | memcpy(&chan->buff[iptr*chan->max_payload_bytes], payload, len); |
| 917 | chan->buff_len[iptr] = len; |
| 918 | seq_no = chan->queuing_sequence_no; |
| 919 | chan->queuing_sequence_no = (chan->queuing_sequence_no + 1) & SPRT_SEQ_NO_MASK0x3FFF; |
| 920 | if (s->timer_handler) |
| 921 | chan->tr03_timer[iptr] = s->timer_handler(s->timer_user_data, ~0) + chan->tr03_timeout; |
| 922 | /*endif*/ |
| 923 | chan->remaining_tries[iptr] = chan->max_tries; |
| 924 | add_timer_queue_last_entry(s, channel, iptr); |
| 925 | if (++iptr >= chan->window_size) |
| 926 | iptr = 0; |
| 927 | /*endif*/ |
| 928 | /* Only change the pointer now we have really finished. */ |
| 929 | chan->buff_in_ptr = iptr; |
| 930 | /* If this is the first activity on this channel, we get the TA02 timer started for |
| 931 | this channel. If the channel is already active we will adjust the timout. */ |
| 932 | if (s->timer_handler) |
| 933 | chan->ta02_timer = s->timer_handler(s->timer_user_data, ~0) + chan->ta02_timeout; |
| 934 | /*endif*/ |
| 935 | span_log(&s->logging, SPAN_LOG_FLOW, "TA02(%d) set to %lu\n", channel, chan->ta02_timer); |
| 936 | /*endif*/ |
| 937 | /* Now send the first copy */ |
| 938 | build_and_send_packet(s, channel, seq_no, payload, len); |
| 939 | break; |
| 940 | case SPRT_TCID_UNRELIABLE_UNSEQUENCED: |
| 941 | /* It is not clear from the spec if this channel should ever carry data. Table B.1 says |
| 942 | the channel is "Used for acknowledgements only", and yet Table B.2 defines a parameter |
| 943 | SPRT_TC0_PAYLOAD_BYTES which is non-zero. */ |
| 944 | /* There is no reason to buffer this. Send it straight out. */ |
| 945 | build_and_send_packet(s, channel, 0, payload, len); |
| 946 | break; |
| 947 | case SPRT_TCID_UNRELIABLE_SEQUENCED: |
| 948 | /* There is no reason to buffer this. Send it straight out. */ |
| 949 | build_and_send_packet(s, channel, chan->queuing_sequence_no, payload, len); |
| 950 | chan->queuing_sequence_no = (chan->queuing_sequence_no + 1) & SPRT_SEQ_NO_MASK0x3FFF; |
| 951 | break; |
| 952 | } |
| 953 | /*endswitch*/ |
| 954 | return 0; |
| 955 | } |
| 956 | /*- End of function --------------------------------------------------------*/ |
| 957 | |
| 958 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_local_tc_windows_size(sprt_state_t *s, int channel, int size) |
| 959 | { |
| 960 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 961 | return -1; |
| 962 | /*endif*/ |
| 963 | if (size < channel_parm_limits[channel].min_window_size |
| 964 | || |
| 965 | size > channel_parm_limits[channel].max_window_size) |
| 966 | { |
| 967 | return -1; |
| 968 | } |
| 969 | /*endif*/ |
| 970 | s->rx.chan[channel].window_size = size; |
| 971 | return 0; |
| 972 | } |
| 973 | /*- End of function --------------------------------------------------------*/ |
| 974 | |
| 975 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_local_tc_windows_size(sprt_state_t *s, int channel) |
| 976 | { |
| 977 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 978 | return -1; |
| 979 | /*endif*/ |
| 980 | return s->rx.chan[channel].window_size; |
| 981 | } |
| 982 | /*- End of function --------------------------------------------------------*/ |
| 983 | |
| 984 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_local_tc_payload_bytes(sprt_state_t *s, int channel, int max_len) |
| 985 | { |
| 986 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 987 | return -1; |
| 988 | /*endif*/ |
| 989 | if (max_len < channel_parm_limits[channel].min_payload_bytes |
| 990 | || |
| 991 | max_len > channel_parm_limits[channel].max_payload_bytes) |
| 992 | { |
| 993 | return -1; |
| 994 | } |
| 995 | /*endif*/ |
| 996 | s->rx.chan[channel].max_payload_bytes = max_len; |
| 997 | return 0; |
| 998 | } |
| 999 | /*- End of function --------------------------------------------------------*/ |
| 1000 | |
| 1001 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_local_tc_payload_bytes(sprt_state_t *s, int channel) |
| 1002 | { |
| 1003 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 1004 | return -1; |
| 1005 | /*endif*/ |
| 1006 | return s->rx.chan[channel].max_payload_bytes; |
| 1007 | } |
| 1008 | /*- End of function --------------------------------------------------------*/ |
| 1009 | |
| 1010 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_local_tc_max_tries(sprt_state_t *s, int channel, int max_tries) |
| 1011 | { |
| 1012 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1013 | return -1; |
| 1014 | /*endif*/ |
| 1015 | if (max_tries < SPRT_MIN_MAX_TRIES1 |
| 1016 | || |
| 1017 | max_tries > SPRT_MAX_MAX_TRIES20) |
| 1018 | { |
| 1019 | return -1; |
| 1020 | } |
| 1021 | /*endif*/ |
| 1022 | s->tx.chan[channel].max_tries = max_tries; |
| 1023 | return 0; |
| 1024 | } |
| 1025 | /*- End of function --------------------------------------------------------*/ |
| 1026 | |
| 1027 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_local_tc_max_tries(sprt_state_t *s, int channel) |
| 1028 | { |
| 1029 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1030 | return -1; |
| 1031 | /*endif*/ |
| 1032 | return s->tx.chan[channel].max_tries; |
| 1033 | } |
| 1034 | /*- End of function --------------------------------------------------------*/ |
| 1035 | |
| 1036 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_far_tc_windows_size(sprt_state_t *s, int channel, int size) |
| 1037 | { |
| 1038 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1039 | return -1; |
| 1040 | /*endif*/ |
| 1041 | if (size < channel_parm_limits[channel].min_window_size |
| 1042 | || |
| 1043 | size > channel_parm_limits[channel].max_window_size) |
| 1044 | { |
| 1045 | return -1; |
| 1046 | } |
| 1047 | /*endif*/ |
| 1048 | s->tx.chan[channel].window_size = size; |
| 1049 | return 0; |
| 1050 | } |
| 1051 | /*- End of function --------------------------------------------------------*/ |
| 1052 | |
| 1053 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_far_tc_windows_size(sprt_state_t *s, int channel) |
| 1054 | { |
| 1055 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1056 | return -1; |
| 1057 | /*endif*/ |
| 1058 | return s->tx.chan[channel].window_size; |
| 1059 | } |
| 1060 | /*- End of function --------------------------------------------------------*/ |
| 1061 | |
| 1062 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_far_tc_payload_bytes(sprt_state_t *s, int channel, int max_len) |
| 1063 | { |
| 1064 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 1065 | return -1; |
| 1066 | /*endif*/ |
| 1067 | if (max_len < channel_parm_limits[channel].min_payload_bytes |
| 1068 | || |
| 1069 | max_len > channel_parm_limits[channel].max_payload_bytes) |
| 1070 | { |
| 1071 | return -1; |
| 1072 | } |
| 1073 | /*endif*/ |
| 1074 | s->tx.chan[channel].max_payload_bytes = max_len; |
| 1075 | return 0; |
| 1076 | } |
| 1077 | /*- End of function --------------------------------------------------------*/ |
| 1078 | |
| 1079 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_far_tc_payload_bytes(sprt_state_t *s, int channel) |
| 1080 | { |
| 1081 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 1082 | return -1; |
| 1083 | /*endif*/ |
| 1084 | return s->tx.chan[channel].max_payload_bytes; |
| 1085 | } |
| 1086 | /*- End of function --------------------------------------------------------*/ |
| 1087 | |
| 1088 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_tc_timeout(sprt_state_t *s, int channel, int timer, int timeout) |
| 1089 | { |
| 1090 | switch (timer) |
| 1091 | { |
| 1092 | case SPRT_TIMER_TA01: |
| 1093 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 1094 | return -1; |
| 1095 | /*endif*/ |
| 1096 | s->tx.ta01_timeout = timeout; |
| 1097 | break; |
| 1098 | case SPRT_TIMER_TA02: |
| 1099 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1100 | return -1; |
| 1101 | /*endif*/ |
| 1102 | s->tx.chan[channel].ta02_timeout = timeout; |
| 1103 | break; |
| 1104 | case SPRT_TIMER_TR03: |
| 1105 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1106 | return -1; |
| 1107 | /*endif*/ |
| 1108 | s->tx.chan[channel].tr03_timeout = timeout; |
| 1109 | break; |
| 1110 | default: |
| 1111 | return -1; |
| 1112 | } |
| 1113 | /*endswitch*/ |
| 1114 | return 0; |
| 1115 | } |
| 1116 | /*- End of function --------------------------------------------------------*/ |
| 1117 | |
| 1118 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_get_tc_timeout(sprt_state_t *s, int channel, int timer) |
| 1119 | { |
| 1120 | int timeout; |
| 1121 | |
| 1122 | switch (timer) |
| 1123 | { |
| 1124 | case SPRT_TIMER_TA01: |
| 1125 | if (channel < SPRT_TCID_MIN || channel > SPRT_TCID_MAX) |
| 1126 | return -1; |
| 1127 | /*endif*/ |
| 1128 | timeout = s->tx.ta01_timeout; |
| 1129 | break; |
| 1130 | case SPRT_TIMER_TA02: |
| 1131 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1132 | return -1; |
| 1133 | /*endif*/ |
| 1134 | timeout = s->tx.chan[channel].ta02_timeout; |
| 1135 | break; |
| 1136 | case SPRT_TIMER_TR03: |
| 1137 | if (channel < SPRT_TCID_MIN_RELIABLE || channel > SPRT_TCID_MAX_RELIABLE) |
| 1138 | return -1; |
| 1139 | /*endif*/ |
| 1140 | timeout = s->tx.chan[channel].tr03_timeout; |
| 1141 | break; |
| 1142 | default: |
| 1143 | return -1; |
| 1144 | } |
| 1145 | /*endswitch*/ |
| 1146 | return timeout; |
| 1147 | } |
| 1148 | /*- End of function --------------------------------------------------------*/ |
| 1149 | |
| 1150 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_set_local_busy(sprt_state_t *s, int channel, bool_Bool busy) |
| 1151 | { |
| 1152 | bool_Bool previous_busy; |
| 1153 | |
| 1154 | previous_busy = false0; |
| 1155 | if (channel >= SPRT_TCID_MIN_RELIABLE && channel <= SPRT_TCID_MAX_RELIABLE) |
| 1156 | { |
| 1157 | previous_busy = s->rx.chan[channel].busy; |
| 1158 | s->rx.chan[channel].busy = busy; |
| 1159 | /* We may want to schedule an immediate callback to push out some packets |
| 1160 | which are ready for delivery, if we are removing the busy condition. */ |
| 1161 | if (previous_busy && !busy) |
| 1162 | { |
| 1163 | s->tx.immediate_timer = true1; |
| 1164 | update_timer(s); |
| 1165 | } |
| 1166 | /*endif*/ |
| 1167 | } |
| 1168 | /*endif*/ |
| 1169 | return previous_busy; |
| 1170 | } |
| 1171 | /*- End of function --------------------------------------------------------*/ |
| 1172 | |
| 1173 | SPAN_DECLARE(bool)__attribute__((visibility("default"))) _Bool sprt_get_far_busy_status(sprt_state_t *s, int channel) |
| 1174 | { |
| 1175 | return s->tx.chan[channel].busy; |
| 1176 | } |
| 1177 | /*- End of function --------------------------------------------------------*/ |
| 1178 | |
| 1179 | SPAN_DECLARE(logging_state_t *)__attribute__((visibility("default"))) logging_state_t * sprt_get_logging_state(sprt_state_t *s) |
| 1180 | { |
| 1181 | return &s->logging; |
| 1182 | } |
| 1183 | /*- End of function --------------------------------------------------------*/ |
| 1184 | |
| 1185 | SPAN_DECLARE(sprt_state_t *)__attribute__((visibility("default"))) sprt_state_t * sprt_init(sprt_state_t *s, |
| 1186 | int subsession_id, |
| 1187 | int rx_payload_type, |
| 1188 | int tx_payload_type, |
| 1189 | channel_parms_t parms[SPRT_CHANNELS4], |
| 1190 | sprt_tx_packet_handler_t tx_packet_handler, |
| 1191 | void *tx_user_data, |
| 1192 | sprt_rx_delivery_handler_t rx_delivery_handler, |
| 1193 | void *rx_user_data, |
| 1194 | sprt_timer_handler_t timer_handler, |
| 1195 | void *timer_user_data, |
| 1196 | span_modem_status_func_t status_handler, |
| 1197 | void *status_user_data) |
| 1198 | { |
| 1199 | int i; |
| 1200 | int j; |
| 1201 | |
| 1202 | if (rx_delivery_handler == NULL((void*)0) || tx_packet_handler == NULL((void*)0) || timer_handler == NULL((void*)0) || status_handler == NULL((void*)0)) |
| 1203 | return NULL((void*)0); |
| 1204 | /*endif*/ |
| 1205 | if (parms == NULL((void*)0)) |
| 1206 | { |
| 1207 | parms = default_channel_parms; |
Value stored to 'parms' is never read | |
| 1208 | } |
| 1209 | else |
| 1210 | { |
| 1211 | for (i = SPRT_TCID_MIN; i <= SPRT_TCID_MAX; i++) |
| 1212 | { |
| 1213 | if (parms[i].payload_bytes < channel_parm_limits[i].min_payload_bytes |
| 1214 | || |
| 1215 | parms[i].payload_bytes > channel_parm_limits[i].max_payload_bytes) |
| 1216 | { |
| 1217 | return NULL((void*)0); |
| 1218 | } |
| 1219 | /*endif*/ |
| 1220 | if (parms[i].window_size < channel_parm_limits[i].min_window_size |
| 1221 | || |
| 1222 | parms[i].window_size > channel_parm_limits[i].max_window_size) |
| 1223 | { |
| 1224 | return NULL((void*)0); |
| 1225 | } |
| 1226 | /*endif*/ |
| 1227 | } |
| 1228 | /*endfor*/ |
| 1229 | } |
| 1230 | /*endif*/ |
| 1231 | if (s == NULL((void*)0)) |
| 1232 | { |
| 1233 | if ((s = (sprt_state_t *) malloc(sizeof(*s))) == NULL((void*)0)) |
| 1234 | return NULL((void*)0); |
| 1235 | /*endif*/ |
| 1236 | } |
| 1237 | /*endif*/ |
| 1238 | memset(s, 0, sizeof(*s)); |
| 1239 | |
| 1240 | span_log_init(&s->logging, SPAN_LOG_NONE, NULL((void*)0)); |
| 1241 | span_log_set_protocol(&s->logging, "SPRT"); |
| 1242 | |
| 1243 | /* Set up all the pointers to buffers */ |
| 1244 | s->tx.chan[SPRT_TCID_RELIABLE_SEQUENCED].buff = s->tc1_tx_buff; |
| 1245 | s->tx.chan[SPRT_TCID_RELIABLE_SEQUENCED].buff_len = s->tc1_tx_buff_len; |
| 1246 | s->tx.chan[SPRT_TCID_RELIABLE_SEQUENCED].tr03_timer = s->tc1_tx_tr03_timer; |
| 1247 | s->tx.chan[SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED].buff = s->tc2_tx_buff; |
| 1248 | s->tx.chan[SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED].buff_len = s->tc2_tx_buff_len; |
| 1249 | s->tx.chan[SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED].tr03_timer = s->tc2_tx_tr03_timer; |
| 1250 | |
| 1251 | s->rx.chan[SPRT_TCID_RELIABLE_SEQUENCED].buff = s->tc1_rx_buff; |
| 1252 | s->rx.chan[SPRT_TCID_RELIABLE_SEQUENCED].buff_len = s->tc1_rx_buff_len; |
| 1253 | s->rx.chan[SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED].buff = s->tc2_rx_buff; |
| 1254 | s->rx.chan[SPRT_TCID_EXPEDITED_RELIABLE_SEQUENCED].buff_len = s->tc2_rx_buff_len; |
| 1255 | |
| 1256 | s->rx.subsession_id = -1; |
| 1257 | s->tx.subsession_id = subsession_id; |
| 1258 | s->rx.payload_type = rx_payload_type; |
| 1259 | s->tx.payload_type = tx_payload_type; |
| 1260 | |
| 1261 | s->tx.ta01_timeout = default_channel_parms[SPRT_TCID_RELIABLE_SEQUENCED].timer_ta01; |
| 1262 | for (i = SPRT_TCID_MIN; i <= SPRT_TCID_MAX; i++) |
| 1263 | { |
| 1264 | s->rx.chan[i].max_payload_bytes = default_channel_parms[i].payload_bytes; |
| 1265 | s->rx.chan[i].window_size = default_channel_parms[i].window_size; |
| 1266 | s->rx.chan[i].ta02_timeout = default_channel_parms[i].timer_ta02; |
| 1267 | s->rx.chan[i].tr03_timeout = default_channel_parms[i].timer_tr03; |
| 1268 | |
| 1269 | s->tx.chan[i].max_payload_bytes = default_channel_parms[i].payload_bytes; |
| 1270 | s->tx.chan[i].window_size = default_channel_parms[i].window_size; |
| 1271 | s->tx.chan[i].ta02_timeout = default_channel_parms[i].timer_ta02; |
| 1272 | s->tx.chan[i].tr03_timeout = default_channel_parms[i].timer_tr03; |
| 1273 | |
| 1274 | s->tx.chan[i].max_tries = SPRT_DEFAULT_MAX_TRIES10; |
| 1275 | |
| 1276 | s->rx.chan[i].base_sequence_no = 0; |
| 1277 | } |
| 1278 | /*endfor*/ |
| 1279 | |
| 1280 | for (i = SPRT_TCID_MIN_RELIABLE; i <= SPRT_TCID_MAX_RELIABLE; i++) |
| 1281 | { |
| 1282 | /* Initialise the sorted TR03 timeout queues */ |
| 1283 | s->tx.chan[i].first_in_time = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 1284 | s->tx.chan[i].last_in_time = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 1285 | |
| 1286 | for (j = 0; j < channel_parm_limits[i].max_window_size; j++) |
| 1287 | { |
| 1288 | s->rx.chan[i].buff_len[j] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 1289 | s->tx.chan[i].buff_len[j] = SPRT_LEN_SLOT_FREE0xFFFF; |
| 1290 | s->tx.chan[i].prev_in_time[j] = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 1291 | s->tx.chan[i].next_in_time[j] = TR03_QUEUE_FREE_SLOT_TAG0xFFU; |
| 1292 | } |
| 1293 | /*endfor*/ |
| 1294 | } |
| 1295 | /*endfor*/ |
| 1296 | |
| 1297 | s->rx_delivery_handler = rx_delivery_handler; |
| 1298 | s->tx_user_data = tx_user_data; |
| 1299 | s->tx_packet_handler = tx_packet_handler; |
| 1300 | s->rx_user_data = rx_user_data; |
| 1301 | s->timer_handler = timer_handler; |
| 1302 | s->timer_user_data = timer_user_data; |
| 1303 | s->status_handler = status_handler; |
| 1304 | s->status_user_data = status_user_data; |
| 1305 | |
| 1306 | return s; |
| 1307 | } |
| 1308 | /*- End of function --------------------------------------------------------*/ |
| 1309 | |
| 1310 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_release(sprt_state_t *s) |
| 1311 | { |
| 1312 | return 0; |
| 1313 | } |
| 1314 | /*- End of function --------------------------------------------------------*/ |
| 1315 | |
| 1316 | SPAN_DECLARE(int)__attribute__((visibility("default"))) int sprt_free(sprt_state_t *s) |
| 1317 | { |
| 1318 | int ret; |
| 1319 | |
| 1320 | ret = sprt_release(s); |
| 1321 | span_free(s); |
| 1322 | return ret; |
| 1323 | } |
| 1324 | /*- End of function --------------------------------------------------------*/ |
| 1325 | /*- End of file ------------------------------------------------------------*/ |