| File: | su/su_timer.c |
| Warning: | line 211, column 1 Use of memory after it is freed |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||||
| 2 | * This file is part of the Sofia-SIP package | |||||
| 3 | * | |||||
| 4 | * Copyright (C) 2005 Nokia Corporation. | |||||
| 5 | * | |||||
| 6 | * Contact: Pekka Pessi <pekka.pessi@nokia.com> | |||||
| 7 | * | |||||
| 8 | * This library is free software; you can redistribute it and/or | |||||
| 9 | * modify it under the terms of the GNU Lesser General Public License | |||||
| 10 | * as published by the Free Software Foundation; either version 2.1 of | |||||
| 11 | * the License, or (at your option) any later version. | |||||
| 12 | * | |||||
| 13 | * This library is distributed in the hope that it will be useful, but | |||||
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
| 16 | * Lesser General Public License for more details. | |||||
| 17 | * | |||||
| 18 | * You should have received a copy of the GNU Lesser General Public | |||||
| 19 | * License along with this library; if not, write to the Free Software | |||||
| 20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA | |||||
| 21 | * 02110-1301 USA | |||||
| 22 | * | |||||
| 23 | */ | |||||
| 24 | ||||||
| 25 | /**@CFILE su_timer.c | |||||
| 26 | * | |||||
| 27 | * Timer interface for su_root. | |||||
| 28 | * | |||||
| 29 | * @author Pekka Pessi <Pekka.Pessi@nokia.com> | |||||
| 30 | * Created: Fri Apr 28 15:45:41 2000 ppessi | |||||
| 31 | */ | |||||
| 32 | ||||||
| 33 | #include "config.h" | |||||
| 34 | ||||||
| 35 | #include <sys/types.h> | |||||
| 36 | #include "sofia-sip/heap.h" | |||||
| 37 | ||||||
| 38 | typedef union { | |||||
| 39 | void *private; | |||||
| 40 | /* Use for debugging */ | |||||
| 41 | struct timers_priv { | |||||
| 42 | size_t _size, _used; | |||||
| 43 | struct su_timer_s * _heap[2]; | |||||
| 44 | } *actual; | |||||
| 45 | } su_timer_heap_t; | |||||
| 46 | ||||||
| 47 | #define SU_TIMER_QUEUE_Tsu_timer_heap_t su_timer_heap_t | |||||
| 48 | ||||||
| 49 | #include "sofia-sip/su.h" | |||||
| 50 | #include "su_port.h" | |||||
| 51 | #include "sofia-sip/su_wait.h" | |||||
| 52 | #include "sofia-sip/su_alloc.h" | |||||
| 53 | #include "sofia-sip/rbtree.h" | |||||
| 54 | ||||||
| 55 | #include "su_module_debug.h" | |||||
| 56 | ||||||
| 57 | #include <stdlib.h> | |||||
| 58 | #include <assert.h> | |||||
| 59 | #include <stdio.h> | |||||
| 60 | #include <string.h> | |||||
| 61 | ||||||
| 62 | /**@ingroup su_wait | |||||
| 63 | * | |||||
| 64 | * @page su_timer_t Timer Objects | |||||
| 65 | * | |||||
| 66 | * Timers are used to schedule some task to be executed at given time or | |||||
| 67 | * after a default interval. The default interval is specified when the | |||||
| 68 | * timer is created. We call timer activation "setting the timer", and | |||||
| 69 | * deactivation "resetting the timer" (as in SDL). When the given time has | |||||
| 70 | * arrived or the default interval has elapsed, the timer expires and | |||||
| 71 | * it is ready for execution. | |||||
| 72 | * | |||||
| 73 | * The functions used to create, destroy, activate, and manage timers are | |||||
| 74 | * as follows: | |||||
| 75 | * - su_timer_create(), | |||||
| 76 | * - su_timer_destroy(), | |||||
| 77 | * - su_timer_set_interval(), | |||||
| 78 | * - su_timer_set_at(), | |||||
| 79 | * - su_timer_set(), | |||||
| 80 | * - su_timer_set_for_ever(), | |||||
| 81 | * - su_timer_run(), | |||||
| 82 | * - su_timer_reset(), and | |||||
| 83 | * - su_timer_root(). | |||||
| 84 | * | |||||
| 85 | * @note | |||||
| 86 | * Timers use poll() to wake up waiting thread. On Linux, the timer | |||||
| 87 | * granularity is determined by HZ kernel parameter, which decided when the | |||||
| 88 | * kernel was compiled. With kernel 2.4 the default granularity is 10 | |||||
| 89 | * milliseconds, and minimum duration of a timer is approximately 20 | |||||
| 90 | * milliseconds. Naturally, using RTC would give better timing results, but | |||||
| 91 | * RTC usage above 64 Hz is privileged operation. | |||||
| 92 | * | |||||
| 93 | * @par | |||||
| 94 | * On Windows, the granularity is determined by the real-time clock timer. | |||||
| 95 | * By default, it uses the 18.78 Hz granularity. That timer can be adjusted | |||||
| 96 | * up to 1000 Hz using Windows multimedia library. | |||||
| 97 | * | |||||
| 98 | * @section su_timer_usage Using Timers | |||||
| 99 | * | |||||
| 100 | * A timer is created by calling su_timer_create(): | |||||
| 101 | * @code | |||||
| 102 | * timer = su_timer_create(su_root_task(root), 200); | |||||
| 103 | * @endcode | |||||
| 104 | * The default duration is given in milliseconds. | |||||
| 105 | * | |||||
| 106 | * Usually, timer wakeup function should be called at regular intervals. In | |||||
| 107 | * such case, the timer is activated using function su_timer_set_for_ever(). | |||||
| 108 | * When the timer is activated it is given the wakeup function and pointer to | |||||
| 109 | * context data: | |||||
| 110 | * @code | |||||
| 111 | * su_timer_set_for_ever(timer, timer_wakeup, args); | |||||
| 112 | * @endcode | |||||
| 113 | * | |||||
| 114 | * When the interval has passed, the root event loop calls the wakeup | |||||
| 115 | * function: | |||||
| 116 | * @code | |||||
| 117 | * timer_wakeup(root, timer, args); | |||||
| 118 | * @endcode | |||||
| 119 | * | |||||
| 120 | * If the number of calls to callback function is important, use | |||||
| 121 | * su_timer_run() instead. The run timer tries to compensate for missed time | |||||
| 122 | * and invokes the callback function several times if needed. (Because the | |||||
| 123 | * real-time clock can be adjusted or the program suspended, e.g., while | |||||
| 124 | * debugged, the callback function can be called thousends of times in a | |||||
| 125 | * row.) Note that while the timer tries to compensate for delays occurred | |||||
| 126 | * before and during the callback, it cannot be used as an exact source of | |||||
| 127 | * timing information. | |||||
| 128 | * | |||||
| 129 | * Timer ceases running when su_timer_reset() is called. | |||||
| 130 | * | |||||
| 131 | * Alternatively, the timer can be @b set for one-time event invocation. | |||||
| 132 | * When the timer is set, it is given the wakeup function and pointer to | |||||
| 133 | * context data. The actual duration can also be specified using | |||||
| 134 | * su_timer_set_at(). @code su_timer_set(timer, timer_wakeup, args); | |||||
| 135 | * @endcode | |||||
| 136 | * | |||||
| 137 | * When the timer expires, the root event loop calls the wakeup function: | |||||
| 138 | * @code | |||||
| 139 | * timer_wakeup(root, timer, args); | |||||
| 140 | * @endcode | |||||
| 141 | * | |||||
| 142 | * If the timed event is not needed anymore, the timer can be reset: | |||||
| 143 | * @code | |||||
| 144 | * su_timer_reset(timer); | |||||
| 145 | * @endcode | |||||
| 146 | * | |||||
| 147 | * If the timer is expected to be called at regular intervals, it is | |||||
| 148 | * possible to set ro run continously with su_timer_run(). While such a | |||||
| 149 | * continously running timer is active it @b must @b not @b be @b set using | |||||
| 150 | * su_timer_set() or su_timer_set_at(). | |||||
| 151 | * | |||||
| 152 | * When the timer is not needed anymore, the timer object itself should be | |||||
| 153 | * destroyed: | |||||
| 154 | * @code | |||||
| 155 | * su_timer_destroy(timer); | |||||
| 156 | * @endcode | |||||
| 157 | */ | |||||
| 158 | ||||||
| 159 | struct su_timer_s { | |||||
| 160 | su_task_r sut_task; /**< Task reference */ | |||||
| 161 | size_t sut_set; /**< Timer is set (inserted in heap) */ | |||||
| 162 | su_time_t sut_when; /**< When timer should be waken up next time */ | |||||
| 163 | su_duration_t sut_duration; /**< Timer duration */ | |||||
| 164 | su_timer_f sut_wakeup; /**< Function to call when waken up */ | |||||
| 165 | su_timer_arg_t *sut_arg; /**< Pointer to argument data */ | |||||
| 166 | unsigned sut_woken; /**< Timer has waken up this many times */ | |||||
| 167 | ||||||
| 168 | unsigned sut_running:2;/**< Timer is running */ | |||||
| 169 | unsigned sut_deferrable:1;/**< Timer can be deferrable */ | |||||
| 170 | }; | |||||
| 171 | ||||||
| 172 | /** Timer running status */ | |||||
| 173 | enum sut_running { | |||||
| 174 | reset = 0, /**< Timer is not running */ | |||||
| 175 | run_at_intervals = 1, /**< Compensate missed wakeup calls */ | |||||
| 176 | run_for_ever = 2 /**< Do not compensate */ | |||||
| 177 | }; | |||||
| 178 | ||||||
| 179 | #define SU_TIMER_IS_SET(sut)((sut)->sut_set != 0) ((sut)->sut_set != 0) | |||||
| 180 | ||||||
| 181 | HEAP_DECLARE(su_inline, su_timer_queue_t, timers_, su_timer_t *)static inline int timers_resize(void *, su_timer_queue_t *, size_t ); static inline int timers_free(void *, su_timer_queue_t *); static inline int timers_is_full(su_timer_queue_t const); static inline size_t timers_size(su_timer_queue_t const); static inline size_t timers_used(su_timer_queue_t const); static inline void timers_sort(su_timer_queue_t); static inline int timers_add( su_timer_queue_t, su_timer_t *); static inline su_timer_t * timers_remove (su_timer_queue_t, size_t); static inline su_timer_t * timers_get (su_timer_queue_t, size_t); | |||||
| 182 | ||||||
| 183 | su_inlinestatic inline void timers_set(su_timer_t **array, size_t index, su_timer_t *t) | |||||
| 184 | { | |||||
| 185 | array[t->sut_set = index] = t; | |||||
| 186 | } | |||||
| 187 | ||||||
| 188 | su_inlinestatic inline int timers_less(su_timer_t *a, su_timer_t *b) | |||||
| 189 | { | |||||
| 190 | return | |||||
| 191 | a->sut_when.tv_sec < b->sut_when.tv_sec || | |||||
| 192 | (a->sut_when.tv_sec == b->sut_when.tv_sec && | |||||
| 193 | a->sut_when.tv_usec < b->sut_when.tv_usec); | |||||
| 194 | } | |||||
| 195 | ||||||
| 196 | su_inlinestatic inline void *timers_alloc(void *argument, void *memory, size_t size) | |||||
| 197 | { | |||||
| 198 | (void)argument; | |||||
| 199 | ||||||
| 200 | if (size) | |||||
| 201 | return realloc(memory, size); | |||||
| 202 | else | |||||
| 203 | return free(memory), NULL((void*)0); | |||||
| 204 | } | |||||
| 205 | ||||||
| 206 | #ifdef __clang__1 | |||||
| 207 | #pragma clang diagnostic push | |||||
| 208 | #pragma clang diagnostic ignored "-Wunused-function" | |||||
| 209 | #endif | |||||
| 210 | ||||||
| 211 | HEAP_BODIES(su_inline, su_timer_queue_t, timers_, su_timer_t *,static inline int timers_resize(void *realloc_arg, su_timer_queue_t h[1], size_t new_size) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[2]; }; struct timers_priv *_priv; size_t _offset = (__builtin_offsetof(struct timers_priv, _heap[1]) - 1) / sizeof (su_timer_t *); size_t _min_size = 32 - _offset; size_t _bytes; size_t _used = 0; _priv = *(void **)h; if (_priv ) { if (new_size == 0) new_size = 2 * _priv->_size + _offset + 1; _used = _priv->_used; if (new_size < _used) new_size = _used; } if (new_size < _min_size) new_size = _min_size ; _bytes = (_offset + 1 + new_size) * sizeof (su_timer_t *); ( void)realloc_arg; _priv = timers_alloc(realloc_arg, *(struct timers_priv **)h, _bytes); if (!_priv) return -1; *(struct timers_priv * *)h = _priv; _priv->_size = new_size; _priv->_used = _used ; return 0; } static inline int timers_free(void *realloc_arg , su_timer_queue_t h[1]) { (void)realloc_arg; *(void **)h = timers_alloc (realloc_arg, *(void **)h, 0); return 0; } static inline int timers_is_full (su_timer_queue_t h) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; return _priv == ((void*)0) || _priv->_used >= _priv->_size; } static inline int timers_add(su_timer_queue_t h, su_timer_t * e) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; su_timer_t * *heap = _priv->_heap - 1; size_t i , parent; if (_priv == ((void*)0) || _priv->_used >= _priv ->_size) return -1; for (i = ++_priv->_used; i > 1; i = parent) { parent = i / 2; if (!timers_less(e, heap[parent] )) break; timers_set(heap, i, heap[parent]); } timers_set(heap , i, e); return 0; } static inline su_timer_t * timers_remove (su_timer_queue_t h, size_t index) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; su_timer_t * *heap = _priv->_heap - 1 ; su_timer_t * retval[1]; su_timer_t * e; size_t top, left, right , move; if (index - 1 >= _priv->_used) return (((void*) 0)); move = _priv->_used--; timers_set(retval, 0, heap[index ]); for (top = index;;index = top) { left = 2 * top; right = 2 * top + 1; if (left >= move) break; if (right < move && timers_less(heap[right], heap[left])) top = right; else top = left; timers_set(heap, index, heap[top]); } if (index == move ) return *retval; e = heap[move]; for (; index > 1; index = top) { top = index / 2; if (!timers_less(e, heap[top])) break ; timers_set(heap, index, heap[top]); } timers_set(heap, index , e); return *retval; } static inline su_timer_t * timers_get (su_timer_queue_t h, size_t index) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; if (--index >= _priv->_used) return (((void*)0)); return _priv->_heap[index]; } static inline size_t timers_size(su_timer_queue_t const h) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; return _priv ? _priv->_size : 0 ; } static inline size_t timers_used(su_timer_queue_t const h ) { struct timers_priv { size_t _size, _used; su_timer_t * _heap [1];}; struct timers_priv *_priv = *(void **)&h; return _priv ? _priv->_used : 0; } static int timers__less(void *h, size_t a, size_t b) { su_timer_t * *_heap = h; return timers_less(_heap [a], _heap[b]); } static void timers__swap(void *h, size_t a, size_t b) { su_timer_t * *_heap = h; su_timer_t * _swap = _heap [a]; timers_set(_heap, a, _heap[b]); timers_set(_heap, b, _swap ); } static inline void timers_sort(su_timer_queue_t h) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; if (_priv) su_smoothsort (_priv->_heap - 1, 1, _priv->_used, timers__less, timers__swap ); } extern int const timers_dummy_heap | |||||
| ||||||
| 212 | timers_less, timers_set, timers_alloc, NULL)static inline int timers_resize(void *realloc_arg, su_timer_queue_t h[1], size_t new_size) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[2]; }; struct timers_priv *_priv; size_t _offset = (__builtin_offsetof(struct timers_priv, _heap[1]) - 1) / sizeof (su_timer_t *); size_t _min_size = 32 - _offset; size_t _bytes; size_t _used = 0; _priv = *(void **)h; if (_priv ) { if (new_size == 0) new_size = 2 * _priv->_size + _offset + 1; _used = _priv->_used; if (new_size < _used) new_size = _used; } if (new_size < _min_size) new_size = _min_size ; _bytes = (_offset + 1 + new_size) * sizeof (su_timer_t *); ( void)realloc_arg; _priv = timers_alloc(realloc_arg, *(struct timers_priv **)h, _bytes); if (!_priv) return -1; *(struct timers_priv * *)h = _priv; _priv->_size = new_size; _priv->_used = _used ; return 0; } static inline int timers_free(void *realloc_arg , su_timer_queue_t h[1]) { (void)realloc_arg; *(void **)h = timers_alloc (realloc_arg, *(void **)h, 0); return 0; } static inline int timers_is_full (su_timer_queue_t h) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; return _priv == ((void*)0) || _priv->_used >= _priv->_size; } static inline int timers_add(su_timer_queue_t h, su_timer_t * e) { struct timers_priv { size_t _size, _used ; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; su_timer_t * *heap = _priv->_heap - 1; size_t i , parent; if (_priv == ((void*)0) || _priv->_used >= _priv ->_size) return -1; for (i = ++_priv->_used; i > 1; i = parent) { parent = i / 2; if (!timers_less(e, heap[parent] )) break; timers_set(heap, i, heap[parent]); } timers_set(heap , i, e); return 0; } static inline su_timer_t * timers_remove (su_timer_queue_t h, size_t index) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; su_timer_t * *heap = _priv->_heap - 1 ; su_timer_t * retval[1]; su_timer_t * e; size_t top, left, right , move; if (index - 1 >= _priv->_used) return (((void*) 0)); move = _priv->_used--; timers_set(retval, 0, heap[index ]); for (top = index;;index = top) { left = 2 * top; right = 2 * top + 1; if (left >= move) break; if (right < move && timers_less(heap[right], heap[left])) top = right; else top = left; timers_set(heap, index, heap[top]); } if (index == move ) return *retval; e = heap[move]; for (; index > 1; index = top) { top = index / 2; if (!timers_less(e, heap[top])) break ; timers_set(heap, index, heap[top]); } timers_set(heap, index , e); return *retval; } static inline su_timer_t * timers_get (su_timer_queue_t h, size_t index) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; if (--index >= _priv->_used) return (((void*)0)); return _priv->_heap[index]; } static inline size_t timers_size(su_timer_queue_t const h) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; return _priv ? _priv->_size : 0 ; } static inline size_t timers_used(su_timer_queue_t const h ) { struct timers_priv { size_t _size, _used; su_timer_t * _heap [1];}; struct timers_priv *_priv = *(void **)&h; return _priv ? _priv->_used : 0; } static int timers__less(void *h, size_t a, size_t b) { su_timer_t * *_heap = h; return timers_less(_heap [a], _heap[b]); } static void timers__swap(void *h, size_t a, size_t b) { su_timer_t * *_heap = h; su_timer_t * _swap = _heap [a]; timers_set(_heap, a, _heap[b]); timers_set(_heap, b, _swap ); } static inline void timers_sort(su_timer_queue_t h) { struct timers_priv { size_t _size, _used; su_timer_t * _heap[1];}; struct timers_priv *_priv = *(void **)&h; if (_priv) su_smoothsort (_priv->_heap - 1, 1, _priv->_used, timers__less, timers__swap ); } extern int const timers_dummy_heap; | |||||
| 213 | ||||||
| 214 | #ifdef __clang__1 | |||||
| 215 | #pragma clang diagnostic pop | |||||
| 216 | #endif | |||||
| 217 | ||||||
| 218 | /**@internal Set the timer. | |||||
| 219 | * | |||||
| 220 | * @retval 0 when successful (always) | |||||
| 221 | */ | |||||
| 222 | su_inlinestatic inline int | |||||
| 223 | su_timer_set0(su_timer_queue_t *timers, | |||||
| 224 | su_timer_t *t, | |||||
| 225 | su_timer_f wakeup, | |||||
| 226 | su_wakeup_arg_t *arg, | |||||
| 227 | su_time_t when, | |||||
| 228 | su_duration_t offset) | |||||
| 229 | { | |||||
| 230 | int retval; | |||||
| 231 | ||||||
| 232 | if (timers == NULL((void*)0)) | |||||
| 233 | return -1; | |||||
| 234 | ||||||
| 235 | if (SU_TIMER_IS_SET(t)((t)->sut_set != 0)) | |||||
| 236 | timers_remove(timers[0], t->sut_set); | |||||
| 237 | ||||||
| 238 | t->sut_wakeup = wakeup; | |||||
| 239 | t->sut_arg = arg; | |||||
| 240 | t->sut_when = su_time_add(when, offset); | |||||
| 241 | ||||||
| 242 | if (timers_is_full(timers[0])) { | |||||
| 243 | timers_resize(NULL((void*)0), timers, 0); | |||||
| 244 | assert(!timers_is_full(timers[0]))((void) sizeof ((!timers_is_full(timers[0])) ? 1 : 0), __extension__ ({ if (!timers_is_full(timers[0])) ; else __assert_fail ("!timers_is_full(timers[0])" , "su_timer.c", 244, __extension__ __PRETTY_FUNCTION__); })); | |||||
| 245 | if (timers_is_full(timers[0])) | |||||
| 246 | return -1; | |||||
| 247 | } | |||||
| 248 | ||||||
| 249 | retval = timers_add(timers[0], t); assert(retval == 0)((void) sizeof ((retval == 0) ? 1 : 0), __extension__ ({ if ( retval == 0) ; else __assert_fail ("retval == 0", "su_timer.c" , 249, __extension__ __PRETTY_FUNCTION__); })); | |||||
| 250 | ||||||
| 251 | return retval; | |||||
| 252 | } | |||||
| 253 | ||||||
| 254 | /**@internal Validate timer @a t and return pointer to per-port timer tree. | |||||
| 255 | * | |||||
| 256 | * @retval pointer to pointer to timer tree when successful | |||||
| 257 | * @retval NULL upon an error | |||||
| 258 | */ | |||||
| 259 | static | |||||
| 260 | su_timer_queue_t *su_timer_queue(su_timer_t const *t, | |||||
| 261 | int use_sut_duration, | |||||
| 262 | char const *caller) | |||||
| 263 | { | |||||
| 264 | su_timer_queue_t *timers; | |||||
| 265 | ||||||
| 266 | if (t == NULL((void*)0)) { | |||||
| 267 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t,((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 268, "%s(%p): %s\n" , caller, (void *)t, "NULL argument")) : (void)0) | |||||
| 268 | "NULL argument"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 268, "%s(%p): %s\n" , caller, (void *)t, "NULL argument")) : (void)0); | |||||
| 269 | return NULL((void*)0); | |||||
| 270 | } | |||||
| 271 | ||||||
| 272 | if (use_sut_duration && t->sut_duration == 0) { | |||||
| 273 | assert(t->sut_duration > 0)((void) sizeof ((t->sut_duration > 0) ? 1 : 0), __extension__ ({ if (t->sut_duration > 0) ; else __assert_fail ("t->sut_duration > 0" , "su_timer.c", 273, __extension__ __PRETTY_FUNCTION__); })); | |||||
| 274 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t,((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 275, "%s(%p): %s\n" , caller, (void *)t, "timer without default duration")) : (void )0) | |||||
| 275 | "timer without default duration"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 275, "%s(%p): %s\n" , caller, (void *)t, "timer without default duration")) : (void )0); | |||||
| 276 | return NULL((void*)0); | |||||
| 277 | } | |||||
| 278 | ||||||
| 279 | if (t->sut_deferrable) | |||||
| 280 | timers = su_task_deferrable(t->sut_task); | |||||
| 281 | else | |||||
| 282 | timers = su_task_timers(t->sut_task); | |||||
| 283 | ||||||
| 284 | if (timers == NULL((void*)0)) { | |||||
| 285 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t, "invalid timer"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 285, "%s(%p): %s\n" , caller, (void *)t, "invalid timer")) : (void)0); | |||||
| 286 | return NULL((void*)0); | |||||
| 287 | } | |||||
| 288 | else if (timers_is_full(timers[0]) && timers_resize(NULL((void*)0), timers, 0) == -1) { | |||||
| 289 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t, "timer queue failed"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 289, "%s(%p): %s\n" , caller, (void *)t, "timer queue failed")) : (void)0); | |||||
| 290 | return NULL((void*)0); | |||||
| 291 | } | |||||
| 292 | ||||||
| 293 | return timers; | |||||
| 294 | } | |||||
| 295 | ||||||
| 296 | ||||||
| 297 | /**Create a timer. | |||||
| 298 | * | |||||
| 299 | * Allocate and initialize an instance of su_timer_t. | |||||
| 300 | * | |||||
| 301 | * @param task a task for root object with which the timer will be associated | |||||
| 302 | * @param msec the default duration of the timer in milliseconds | |||||
| 303 | * | |||||
| 304 | * @return A pointer to allocated timer instance, NULL on error. | |||||
| 305 | */ | |||||
| 306 | su_timer_t *su_timer_create(su_task_r const task, su_duration_t msec) | |||||
| 307 | { | |||||
| 308 | su_timer_t *retval; | |||||
| 309 | ||||||
| 310 | assert(msec >= 0)((void) sizeof ((msec >= 0) ? 1 : 0), __extension__ ({ if ( msec >= 0) ; else __assert_fail ("msec >= 0", "su_timer.c" , 310, __extension__ __PRETTY_FUNCTION__); })); | |||||
| 311 | ||||||
| 312 | if (!su_task_cmp(task, su_task_null)) | |||||
| 313 | return NULL((void*)0); | |||||
| 314 | ||||||
| 315 | retval = su_zalloc(NULL((void*)0), sizeof(*retval)); | |||||
| 316 | if (retval) { | |||||
| 317 | su_task_copy(retval->sut_task, task); | |||||
| 318 | retval->sut_duration = msec; | |||||
| 319 | } | |||||
| 320 | ||||||
| 321 | return retval; | |||||
| 322 | } | |||||
| 323 | ||||||
| 324 | ||||||
| 325 | /** Destroy a timer. | |||||
| 326 | * | |||||
| 327 | * Deinitialize and free an instance of su_timer_t. | |||||
| 328 | * | |||||
| 329 | * @param t pointer to the timer object | |||||
| 330 | */ | |||||
| 331 | void su_timer_destroy(su_timer_t *t) | |||||
| 332 | { | |||||
| 333 | if (t) { | |||||
| 334 | su_timer_reset(t); | |||||
| 335 | su_task_deinit(t->sut_task); | |||||
| 336 | su_free(NULL((void*)0), t); | |||||
| 337 | } | |||||
| 338 | } | |||||
| 339 | ||||||
| 340 | /** Check if the timer has been set. | |||||
| 341 | * | |||||
| 342 | * @param t pointer to a timer object | |||||
| 343 | * | |||||
| 344 | * @return Nonzero if set, zero if reset. | |||||
| 345 | * | |||||
| 346 | * @NEW_1_12_11 | |||||
| 347 | */ | |||||
| 348 | int su_timer_is_set(su_timer_t const *t) | |||||
| 349 | { | |||||
| 350 | return t && t->sut_set != 0; | |||||
| 351 | } | |||||
| 352 | ||||||
| 353 | /**Return when the timer has been last expired. | |||||
| 354 | * | |||||
| 355 | * @param t pointer to a timer object | |||||
| 356 | * | |||||
| 357 | * @return Timestamp (as returned by su_time()). | |||||
| 358 | * | |||||
| 359 | * @note If the timer is running (set with su_timer_run()), the returned | |||||
| 360 | * timestamp not the actual time but it is rather calculated from the | |||||
| 361 | * initial timestamp. | |||||
| 362 | * | |||||
| 363 | * @NEW_1_12_11 | |||||
| 364 | */ | |||||
| 365 | su_time_t su_timer_latest(su_timer_t const *t) | |||||
| 366 | { | |||||
| 367 | su_time_t tv = { 0, 0 }; | |||||
| 368 | ||||||
| 369 | return t ? t->sut_when : tv; | |||||
| 370 | } | |||||
| 371 | ||||||
| 372 | /** Set the timer for the given @a interval. | |||||
| 373 | * | |||||
| 374 | * Sets (starts) the given timer to expire after the specified duration. | |||||
| 375 | * | |||||
| 376 | * @param t pointer to the timer object | |||||
| 377 | * @param wakeup pointer to the wakeup function | |||||
| 378 | * @param arg argument given to the wakeup function | |||||
| 379 | * @param interval duration in milliseconds before timer wakeup is called | |||||
| 380 | * | |||||
| 381 | * @return 0 if successful, -1 otherwise. | |||||
| 382 | */ | |||||
| 383 | int su_timer_set_interval(su_timer_t *t, | |||||
| 384 | su_timer_f wakeup, | |||||
| 385 | su_timer_arg_t *arg, | |||||
| 386 | su_duration_t interval) | |||||
| 387 | { | |||||
| 388 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_set_interval"); | |||||
| 389 | ||||||
| 390 | return su_timer_set0(timers, t, wakeup, arg, su_now(), interval); | |||||
| 391 | } | |||||
| 392 | ||||||
| 393 | /** Set the timer for the default interval. | |||||
| 394 | * | |||||
| 395 | * Sets (starts) the given timer to expire after the default duration. | |||||
| 396 | * | |||||
| 397 | * The timer must have an default duration. | |||||
| 398 | * | |||||
| 399 | * @param t pointer to the timer object | |||||
| 400 | * @param wakeup pointer to the wakeup function | |||||
| 401 | * @param arg argument given to the wakeup function | |||||
| 402 | * | |||||
| 403 | * @return 0 if successful, -1 otherwise. | |||||
| 404 | */ | |||||
| 405 | int su_timer_set(su_timer_t *t, | |||||
| 406 | su_timer_f wakeup, | |||||
| 407 | su_timer_arg_t *arg) | |||||
| 408 | { | |||||
| 409 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_set"); | |||||
| 410 | ||||||
| 411 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||||
| 412 | } | |||||
| 413 | ||||||
| 414 | /** Set timer at known time. | |||||
| 415 | * | |||||
| 416 | * Sets the timer to expire at given time. | |||||
| 417 | * | |||||
| 418 | * @param t pointer to the timer object | |||||
| 419 | * @param wakeup pointer to the wakeup function | |||||
| 420 | * @param arg argument given to the wakeup function | |||||
| 421 | * @param when time structure defining the wakeup time | |||||
| 422 | * | |||||
| 423 | * @return 0 if successful, -1 otherwise. | |||||
| 424 | */ | |||||
| 425 | int su_timer_set_at(su_timer_t *t, | |||||
| 426 | su_timer_f wakeup, | |||||
| 427 | su_wakeup_arg_t *arg, | |||||
| 428 | su_time_t when) | |||||
| 429 | { | |||||
| 430 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_set_at"); | |||||
| 431 | ||||||
| 432 | return su_timer_set0(timers, t, wakeup, arg, when, 0); | |||||
| 433 | } | |||||
| 434 | ||||||
| 435 | /** Set the timer for regular intervals. | |||||
| 436 | * | |||||
| 437 | * Run the given timer continuously, call wakeup function repeately in the | |||||
| 438 | * default interval. If a wakeup call is missed, try to make it up (in other | |||||
| 439 | * words, this kind of timer fails miserably if time is adjusted and it | |||||
| 440 | * should really use /proc/uptime instead of gettimeofday()). | |||||
| 441 | * | |||||
| 442 | * While a continously running timer is active it @b must @b not @b be @b | |||||
| 443 | * set using su_timer_set() or su_timer_set_at(). | |||||
| 444 | * | |||||
| 445 | * The timer must have an non-zero default interval. | |||||
| 446 | * | |||||
| 447 | * @param t pointer to the timer object | |||||
| 448 | * @param wakeup pointer to the wakeup function | |||||
| 449 | * @param arg argument given to the wakeup function | |||||
| 450 | * | |||||
| 451 | * @return 0 if successful, -1 otherwise. | |||||
| 452 | */ | |||||
| 453 | int su_timer_run(su_timer_t *t, | |||||
| 454 | su_timer_f wakeup, | |||||
| 455 | su_timer_arg_t *arg) | |||||
| 456 | { | |||||
| 457 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_run"); | |||||
| 458 | ||||||
| 459 | if (timers == NULL((void*)0)) | |||||
| 460 | return -1; | |||||
| 461 | ||||||
| 462 | t->sut_running = run_at_intervals; | |||||
| 463 | t->sut_woken = 0; | |||||
| 464 | ||||||
| 465 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||||
| 466 | } | |||||
| 467 | ||||||
| 468 | /**Set the timer for regular intervals. | |||||
| 469 | * | |||||
| 470 | * Run the given timer continuously, call wakeup function repeately in the | |||||
| 471 | * default interval. While a continously running timer is active it @b must | |||||
| 472 | * @b not @b be @b set using su_timer_set() or su_timer_set_at(). Unlike | |||||
| 473 | * su_timer_run(), set for ever timer does not try to catchup missed | |||||
| 474 | * callbacks. | |||||
| 475 | * | |||||
| 476 | * The timer must have an non-zero default interval. | |||||
| 477 | * | |||||
| 478 | * @param t pointer to the timer object | |||||
| 479 | * @param wakeup pointer to the wakeup function | |||||
| 480 | * @param arg argument given to the wakeup function | |||||
| 481 | * | |||||
| 482 | * @return 0 if successful, -1 otherwise. | |||||
| 483 | */ | |||||
| 484 | int su_timer_set_for_ever(su_timer_t *t, | |||||
| 485 | su_timer_f wakeup, | |||||
| 486 | su_timer_arg_t *arg) | |||||
| 487 | { | |||||
| 488 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_set_for_ever"); | |||||
| 489 | ||||||
| 490 | if (timers == NULL((void*)0)) | |||||
| 491 | return -1; | |||||
| 492 | ||||||
| 493 | t->sut_running = run_for_ever; | |||||
| 494 | t->sut_woken = 0; | |||||
| 495 | ||||||
| 496 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||||
| 497 | } | |||||
| 498 | ||||||
| 499 | /**Reset the timer. | |||||
| 500 | * | |||||
| 501 | * Resets (stops) the given timer. | |||||
| 502 | * | |||||
| 503 | * @param t pointer to the timer object | |||||
| 504 | * | |||||
| 505 | * @return 0 if successful, -1 otherwise. | |||||
| 506 | */ | |||||
| 507 | int su_timer_reset(su_timer_t *t) | |||||
| 508 | { | |||||
| 509 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_reset"); | |||||
| 510 | ||||||
| 511 | if (timers == NULL((void*)0)) | |||||
| 512 | return -1; | |||||
| 513 | ||||||
| 514 | if (SU_TIMER_IS_SET(t)((t)->sut_set != 0)) | |||||
| 515 | timers_remove(timers[0], t->sut_set); | |||||
| 516 | ||||||
| 517 | t->sut_wakeup = NULL((void*)0); | |||||
| 518 | t->sut_arg = NULL((void*)0); | |||||
| 519 | t->sut_running = reset; | |||||
| 520 | ||||||
| 521 | return 0; | |||||
| 522 | } | |||||
| 523 | ||||||
| 524 | /** @internal Check for expired timers in queue. | |||||
| 525 | * | |||||
| 526 | * The function su_timer_expire() checks a timer queue and executes and | |||||
| 527 | * removes expired timers from the queue. It also calculates the time when | |||||
| 528 | * the next timer expires. | |||||
| 529 | * | |||||
| 530 | * @param timers pointer to the timer queue | |||||
| 531 | * @param timeout timeout in milliseconds [IN/OUT] | |||||
| 532 | * @param now current timestamp | |||||
| 533 | * | |||||
| 534 | * @return | |||||
| 535 | * The number of expired timers. | |||||
| 536 | */ | |||||
| 537 | int su_timer_expire(su_timer_queue_t * const timers, | |||||
| 538 | su_duration_t *timeout, | |||||
| 539 | su_time_t now) | |||||
| 540 | { | |||||
| 541 | su_timer_t *t; | |||||
| 542 | su_timer_f f; | |||||
| 543 | int n = 0; | |||||
| 544 | ||||||
| 545 | if (timers_used(timers[0]) == 0) | |||||
| ||||||
| 546 | return 0; | |||||
| 547 | ||||||
| 548 | while ((t = timers_get(timers[0], 1))) { | |||||
| 549 | if (SU_TIME_CMP(t->sut_when, now)su_time_cmp(t->sut_when, now) > 0) { | |||||
| 550 | su_duration_t at = su_duration(t->sut_when, now); | |||||
| 551 | ||||||
| 552 | if (at < *timeout || *timeout < 0) | |||||
| 553 | *timeout = at; | |||||
| 554 | ||||||
| 555 | break; | |||||
| 556 | } | |||||
| 557 | ||||||
| 558 | timers_remove(timers[0], 1); | |||||
| 559 | ||||||
| 560 | f = t->sut_wakeup; t->sut_wakeup = NULL((void*)0); | |||||
| 561 | assert(f)((void) sizeof ((f) ? 1 : 0), __extension__ ({ if (f) ; else __assert_fail ("f", "su_timer.c", 561, __extension__ __PRETTY_FUNCTION__); })); | |||||
| 562 | ||||||
| 563 | if (t->sut_running == run_at_intervals) { | |||||
| 564 | while (t->sut_running == run_at_intervals && | |||||
| 565 | t->sut_set == 0 && | |||||
| 566 | t->sut_duration > 0) { | |||||
| 567 | if (su_time_diff(t->sut_when, now) > 0) { | |||||
| 568 | su_timer_set0(timers, t, f, t->sut_arg, t->sut_when, 0); | |||||
| 569 | break; | |||||
| 570 | } | |||||
| 571 | t->sut_when = su_time_add(t->sut_when, t->sut_duration); | |||||
| 572 | t->sut_woken++; | |||||
| 573 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg), n++; | |||||
| 574 | } | |||||
| 575 | } | |||||
| 576 | else if (t->sut_running == run_for_ever) { | |||||
| 577 | t->sut_woken++; | |||||
| 578 | t->sut_when = now; | |||||
| 579 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg), n++; | |||||
| 580 | if (t->sut_running == run_for_ever && t->sut_set == 0) | |||||
| 581 | su_timer_set0(timers, t, f, t->sut_arg, now, t->sut_duration); | |||||
| 582 | } | |||||
| 583 | else { | |||||
| 584 | t->sut_when = now; | |||||
| 585 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg); n++; | |||||
| 586 | } | |||||
| 587 | } | |||||
| 588 | ||||||
| 589 | return n; | |||||
| 590 | } | |||||
| 591 | ||||||
| 592 | ||||||
| 593 | /** Calculate duration in milliseconds until next timer expires. */ | |||||
| 594 | su_duration_t su_timer_next_expires(su_timer_queue_t const *timers, | |||||
| 595 | su_time_t now) | |||||
| 596 | { | |||||
| 597 | su_duration_t next = SU_DURATION_MAXSU_DURATION_MAX; | |||||
| 598 | ||||||
| 599 | su_timer_t const *t; | |||||
| 600 | ||||||
| 601 | t = timers ? timers_get(timers[0], 1) : NULL((void*)0); | |||||
| 602 | ||||||
| 603 | if (t) { | |||||
| 604 | next = su_duration(t->sut_when, now); | |||||
| 605 | if (next < 0) | |||||
| 606 | next = 0; | |||||
| 607 | } | |||||
| 608 | ||||||
| 609 | return next; | |||||
| 610 | } | |||||
| 611 | ||||||
| 612 | /** | |||||
| 613 | * Resets and frees all timers belonging to a task. | |||||
| 614 | * | |||||
| 615 | * The function su_timer_destroy_all() resets and frees all timers belonging | |||||
| 616 | * to the specified task in the queue. | |||||
| 617 | * | |||||
| 618 | * @param timers pointer to the timers | |||||
| 619 | * @param task task owning the timers | |||||
| 620 | * | |||||
| 621 | * @return Number of timers reset. | |||||
| 622 | */ | |||||
| 623 | int su_timer_reset_all(su_timer_queue_t *timers, su_task_r task) | |||||
| 624 | { | |||||
| 625 | size_t i; | |||||
| 626 | int n = 0; | |||||
| 627 | ||||||
| 628 | if (!timers) | |||||
| 629 | return 0; | |||||
| 630 | ||||||
| 631 | timers_sort(timers[0]); | |||||
| 632 | ||||||
| 633 | for (i = timers_used(timers[0]); i > 0; i--) { | |||||
| 634 | su_timer_t *t = timers_get(timers[0], i); | |||||
| 635 | ||||||
| 636 | if (su_task_cmp(task, t->sut_task)) | |||||
| 637 | continue; | |||||
| 638 | ||||||
| 639 | timers_remove(timers[0], i); | |||||
| 640 | ||||||
| 641 | su_free(NULL((void*)0), t); | |||||
| 642 | n++; | |||||
| 643 | } | |||||
| 644 | ||||||
| 645 | if (!timers_used(timers[0])) | |||||
| 646 | free(timers->private), timers->private = NULL((void*)0); | |||||
| 647 | ||||||
| 648 | return n; | |||||
| 649 | } | |||||
| 650 | ||||||
| 651 | /** Get the root object owning the timer. | |||||
| 652 | * | |||||
| 653 | * Return pointer to the root object owning the timer. | |||||
| 654 | * | |||||
| 655 | * @param t pointer to the timer | |||||
| 656 | * | |||||
| 657 | * @return Pointer to the root object. | |||||
| 658 | */ | |||||
| 659 | su_root_t *su_timer_root(su_timer_t const *t) | |||||
| 660 | { | |||||
| 661 | return t ? su_task_root(t->sut_task) : NULL((void*)0); | |||||
| 662 | } | |||||
| 663 | ||||||
| 664 | ||||||
| 665 | /** Change timer as deferrable (or as undeferrable). | |||||
| 666 | * | |||||
| 667 | * A deferrable timer is executed after the given timeout, however, the task | |||||
| 668 | * tries to avoid being woken up only because the timeout. Deferable timers | |||||
| 669 | * have their own queue and timers there are ignored when calculating the | |||||
| 670 | * timeout for epoll()/select()/whatever unless the timeout would exceed the | |||||
| 671 | * maximum defer time. The maximum defer time is 15 seconds by default, but | |||||
| 672 | * it can be modified by su_root_set_max_defer(). | |||||
| 673 | * | |||||
| 674 | * @param t pointer to the timer | |||||
| 675 | * @param value make timer deferrable if true, undeferrable if false | |||||
| 676 | * | |||||
| 677 | * @return 0 if succesful, -1 upon an error | |||||
| 678 | * | |||||
| 679 | * @sa su_root_set_max_defer() | |||||
| 680 | * | |||||
| 681 | * @NEW_1_12_7 | |||||
| 682 | */ | |||||
| 683 | int su_timer_deferrable(su_timer_t *t, int value) | |||||
| 684 | { | |||||
| 685 | if (t == NULL((void*)0) || su_task_deferrable(t->sut_task) == NULL((void*)0)) | |||||
| 686 | return errno(*__errno_location ()) = EINVAL22, -1; | |||||
| 687 | ||||||
| 688 | t->sut_deferrable = value != 0; | |||||
| 689 | ||||||
| 690 | return 0; | |||||
| 691 | } |