| File: | su/su_timer.c |
| Warning: | line 229, column 73 Use of memory after it is freed |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * This file is part of the Sofia-SIP package | |||
| 3 | * | |||
| 4 | * Copyright (C) 2005 Nokia Corporation. | |||
| 5 | * | |||
| 6 | * Contact: Pekka Pessi <pekka.pessi@nokia.com> | |||
| 7 | * | |||
| 8 | * This library is free software; you can redistribute it and/or | |||
| 9 | * modify it under the terms of the GNU Lesser General Public License | |||
| 10 | * as published by the Free Software Foundation; either version 2.1 of | |||
| 11 | * the License, or (at your option) any later version. | |||
| 12 | * | |||
| 13 | * This library is distributed in the hope that it will be useful, but | |||
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| 16 | * Lesser General Public License for more details. | |||
| 17 | * | |||
| 18 | * You should have received a copy of the GNU Lesser General Public | |||
| 19 | * License along with this library; if not, write to the Free Software | |||
| 20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA | |||
| 21 | * 02110-1301 USA | |||
| 22 | * | |||
| 23 | */ | |||
| 24 | ||||
| 25 | /**@CFILE su_timer.c | |||
| 26 | * | |||
| 27 | * Timer interface for su_root. | |||
| 28 | * | |||
| 29 | * @author Pekka Pessi <Pekka.Pessi@nokia.com> | |||
| 30 | * Created: Fri Apr 28 15:45:41 2000 ppessi | |||
| 31 | */ | |||
| 32 | ||||
| 33 | #include "config.h" | |||
| 34 | ||||
| 35 | #include <sys/types.h> | |||
| 36 | #include "sofia-sip/heap.h" | |||
| 37 | ||||
| 38 | typedef union { | |||
| 39 | void *private; | |||
| 40 | /* Use for debugging */ | |||
| 41 | struct timers_priv { | |||
| 42 | size_t _size, _used; | |||
| 43 | struct su_timer_s * _heap[2]; | |||
| 44 | } *actual; | |||
| 45 | } su_timer_heap_t; | |||
| 46 | ||||
| 47 | #define SU_TIMER_QUEUE_Tsu_timer_heap_t su_timer_heap_t | |||
| 48 | ||||
| 49 | #include "sofia-sip/su.h" | |||
| 50 | #include "su_port.h" | |||
| 51 | #include "sofia-sip/su_wait.h" | |||
| 52 | #include "sofia-sip/su_alloc.h" | |||
| 53 | #include "sofia-sip/rbtree.h" | |||
| 54 | ||||
| 55 | #include "su_module_debug.h" | |||
| 56 | ||||
| 57 | #include <stdlib.h> | |||
| 58 | #include <assert.h> | |||
| 59 | #include <stdio.h> | |||
| 60 | #include <string.h> | |||
| 61 | ||||
| 62 | /**@ingroup su_wait | |||
| 63 | * | |||
| 64 | * @page su_timer_t Timer Objects | |||
| 65 | * | |||
| 66 | * Timers are used to schedule some task to be executed at given time or | |||
| 67 | * after a default interval. The default interval is specified when the | |||
| 68 | * timer is created. We call timer activation "setting the timer", and | |||
| 69 | * deactivation "resetting the timer" (as in SDL). When the given time has | |||
| 70 | * arrived or the default interval has elapsed, the timer expires and | |||
| 71 | * it is ready for execution. | |||
| 72 | * | |||
| 73 | * The functions used to create, destroy, activate, and manage timers are | |||
| 74 | * as follows: | |||
| 75 | * - su_timer_create(), | |||
| 76 | * - su_timer_destroy(), | |||
| 77 | * - su_timer_set_interval(), | |||
| 78 | * - su_timer_set_at(), | |||
| 79 | * - su_timer_set(), | |||
| 80 | * - su_timer_set_for_ever(), | |||
| 81 | * - su_timer_run(), | |||
| 82 | * - su_timer_reset(), and | |||
| 83 | * - su_timer_root(). | |||
| 84 | * | |||
| 85 | * @note | |||
| 86 | * Timers use poll() to wake up waiting thread. On Linux, the timer | |||
| 87 | * granularity is determined by HZ kernel parameter, which decided when the | |||
| 88 | * kernel was compiled. With kernel 2.4 the default granularity is 10 | |||
| 89 | * milliseconds, and minimum duration of a timer is approximately 20 | |||
| 90 | * milliseconds. Naturally, using RTC would give better timing results, but | |||
| 91 | * RTC usage above 64 Hz is privileged operation. | |||
| 92 | * | |||
| 93 | * @par | |||
| 94 | * On Windows, the granularity is determined by the real-time clock timer. | |||
| 95 | * By default, it uses the 18.78 Hz granularity. That timer can be adjusted | |||
| 96 | * up to 1000 Hz using Windows multimedia library. | |||
| 97 | * | |||
| 98 | * @section su_timer_usage Using Timers | |||
| 99 | * | |||
| 100 | * A timer is created by calling su_timer_create(): | |||
| 101 | * @code | |||
| 102 | * timer = su_timer_create(su_root_task(root), 200); | |||
| 103 | * @endcode | |||
| 104 | * The default duration is given in milliseconds. | |||
| 105 | * | |||
| 106 | * Usually, timer wakeup function should be called at regular intervals. In | |||
| 107 | * such case, the timer is activated using function su_timer_set_for_ever(). | |||
| 108 | * When the timer is activated it is given the wakeup function and pointer to | |||
| 109 | * context data: | |||
| 110 | * @code | |||
| 111 | * su_timer_set_for_ever(timer, timer_wakeup, args); | |||
| 112 | * @endcode | |||
| 113 | * | |||
| 114 | * When the interval has passed, the root event loop calls the wakeup | |||
| 115 | * function: | |||
| 116 | * @code | |||
| 117 | * timer_wakeup(root, timer, args); | |||
| 118 | * @endcode | |||
| 119 | * | |||
| 120 | * If the number of calls to callback function is important, use | |||
| 121 | * su_timer_run() instead. The run timer tries to compensate for missed time | |||
| 122 | * and invokes the callback function several times if needed. (Because the | |||
| 123 | * real-time clock can be adjusted or the program suspended, e.g., while | |||
| 124 | * debugged, the callback function can be called thousends of times in a | |||
| 125 | * row.) Note that while the timer tries to compensate for delays occurred | |||
| 126 | * before and during the callback, it cannot be used as an exact source of | |||
| 127 | * timing information. | |||
| 128 | * | |||
| 129 | * Timer ceases running when su_timer_reset() is called. | |||
| 130 | * | |||
| 131 | * Alternatively, the timer can be @b set for one-time event invocation. | |||
| 132 | * When the timer is set, it is given the wakeup function and pointer to | |||
| 133 | * context data. The actual duration can also be specified using | |||
| 134 | * su_timer_set_at(). @code su_timer_set(timer, timer_wakeup, args); | |||
| 135 | * @endcode | |||
| 136 | * | |||
| 137 | * When the timer expires, the root event loop calls the wakeup function: | |||
| 138 | * @code | |||
| 139 | * timer_wakeup(root, timer, args); | |||
| 140 | * @endcode | |||
| 141 | * | |||
| 142 | * If the timed event is not needed anymore, the timer can be reset: | |||
| 143 | * @code | |||
| 144 | * su_timer_reset(timer); | |||
| 145 | * @endcode | |||
| 146 | * | |||
| 147 | * If the timer is expected to be called at regular intervals, it is | |||
| 148 | * possible to set ro run continously with su_timer_run(). While such a | |||
| 149 | * continously running timer is active it @b must @b not @b be @b set using | |||
| 150 | * su_timer_set() or su_timer_set_at(). | |||
| 151 | * | |||
| 152 | * When the timer is not needed anymore, the timer object itself should be | |||
| 153 | * destroyed: | |||
| 154 | * @code | |||
| 155 | * su_timer_destroy(timer); | |||
| 156 | * @endcode | |||
| 157 | */ | |||
| 158 | ||||
| 159 | struct su_timer_s { | |||
| 160 | su_task_r sut_task; /**< Task reference */ | |||
| 161 | size_t sut_set; /**< Timer is set (inserted in heap) */ | |||
| 162 | su_time_t sut_when; /**< When timer should be waken up next time */ | |||
| 163 | su_duration_t sut_duration; /**< Timer duration */ | |||
| 164 | su_timer_f sut_wakeup; /**< Function to call when waken up */ | |||
| 165 | su_timer_arg_t *sut_arg; /**< Pointer to argument data */ | |||
| 166 | unsigned sut_woken; /**< Timer has waken up this many times */ | |||
| 167 | ||||
| 168 | unsigned sut_running:2;/**< Timer is running */ | |||
| 169 | unsigned sut_deferrable:1;/**< Timer can be deferrable */ | |||
| 170 | }; | |||
| 171 | ||||
| 172 | /** Timer running status */ | |||
| 173 | enum sut_running { | |||
| 174 | reset = 0, /**< Timer is not running */ | |||
| 175 | run_at_intervals = 1, /**< Compensate missed wakeup calls */ | |||
| 176 | run_for_ever = 2 /**< Do not compensate */ | |||
| 177 | }; | |||
| 178 | ||||
| 179 | #define SU_TIMER_IS_SET(sut)((sut)->sut_set != 0) ((sut)->sut_set != 0) | |||
| 180 | ||||
| 181 | HEAP_DECLARE(su_inline, su_timer_queue_t, timers_, su_timer_t *)static inline int timers_resize(void *, su_timer_queue_t *, size_t ); static inline int timers_free(void *, su_timer_queue_t *); static inline int timers_is_full(su_timer_queue_t const); static inline size_t timers_size(su_timer_queue_t const); static inline size_t timers_used(su_timer_queue_t const); static inline void timers_sort(su_timer_queue_t); static inline int timers_add( su_timer_queue_t, su_timer_t *); static inline su_timer_t * timers_remove (su_timer_queue_t, size_t); static inline su_timer_t * timers_get (su_timer_queue_t, size_t); | |||
| 182 | ||||
| 183 | su_inlinestatic inline void timers_set(su_timer_t **array, size_t index, su_timer_t *t) | |||
| 184 | { | |||
| 185 | array[t->sut_set = index] = t; | |||
| 186 | } | |||
| 187 | ||||
| 188 | su_inlinestatic inline int timers_less(su_timer_t *a, su_timer_t *b) | |||
| 189 | { | |||
| 190 | return | |||
| 191 | a->sut_when.tv_sec < b->sut_when.tv_sec || | |||
| 192 | (a->sut_when.tv_sec == b->sut_when.tv_sec && | |||
| 193 | a->sut_when.tv_usec < b->sut_when.tv_usec); | |||
| 194 | } | |||
| 195 | ||||
| 196 | su_inlinestatic inline void *timers_alloc(void *argument, void *memory, size_t size) | |||
| 197 | { | |||
| 198 | (void)argument; | |||
| 199 | ||||
| 200 | if (size) | |||
| 201 | return realloc(memory, size); | |||
| 202 | else | |||
| 203 | return free(memory), NULL((void*)0); | |||
| 204 | } | |||
| 205 | ||||
| 206 | #ifdef __clang__1 | |||
| 207 | #pragma clang diagnostic push | |||
| 208 | #pragma clang diagnostic ignored "-Wunused-function" | |||
| 209 | #endif | |||
| 210 | ||||
| 211 | //HEAP_BODIES(su_inline, su_timer_queue_t, timers_, su_timer_t *, | |||
| 212 | // timers_less, timers_set, timers_alloc, NULL); | |||
| 213 | static __inline int timers_resize(void* realloc_arg, su_timer_queue_t h[1], size_t new_size) | |||
| 214 | { | |||
| 215 | struct timers_priv { size_t _size, _used; su_timer_t* _heap[2]; }; | |||
| 216 | struct timers_priv* _priv; size_t _offset = (((size_t) & (((struct timers_priv*)0)->_heap[1])) - 1) / sizeof(su_timer_t*); size_t _min_size = 32 - _offset; size_t _bytes; size_t _used = 0; _priv = *(void**)h; | |||
| 217 | if (_priv) { if (new_size == 0) new_size = 2 * _priv->_size + _offset + 1; _used = _priv->_used; if (new_size < _used) new_size = _used; } | |||
| 218 | if (new_size < _min_size) new_size = _min_size; _bytes = (_offset + 1 + new_size) * sizeof(su_timer_t*); | |||
| 219 | (void)realloc_arg; _priv = timers_alloc(realloc_arg, *(struct timers_priv**)h, _bytes); | |||
| 220 | if (!_priv) return -1; *(struct timers_priv**)h = _priv; _priv->_size = new_size; _priv->_used = _used; return 0; | |||
| 221 | } | |||
| 222 | static __inline int timers_free(void* realloc_arg, su_timer_queue_t h[1]) | |||
| 223 | { | |||
| 224 | (void)realloc_arg; *(void**)h = timers_alloc(realloc_arg, *(void**)h, 0); return 0; | |||
| 225 | } | |||
| 226 | static __inline int timers_is_full(su_timer_queue_t h) | |||
| 227 | { | |||
| 228 | struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; | |||
| 229 | struct timers_priv* _priv = *(void**)&h; return _priv == ((void*)0) || _priv->_used >= _priv->_size; | |||
| ||||
| 230 | } | |||
| 231 | static __inline int timers_add(su_timer_queue_t h, su_timer_t* e) | |||
| 232 | { | |||
| 233 | struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; | |||
| 234 | struct timers_priv* _priv = *(void**)&h; su_timer_t** heap = _priv->_heap - 1; size_t i, parent; | |||
| 235 | if (_priv == ((void*)0) || _priv->_used >= _priv->_size) return -1; | |||
| 236 | for (i = ++_priv->_used; i > 1; i = parent) { | |||
| 237 | parent = i / 2; | |||
| 238 | if (!timers_less(e, heap[parent])) break; timers_set(heap, i, heap[parent]); | |||
| 239 | } timers_set(heap, i, e); return 0; | |||
| 240 | } | |||
| 241 | static __inline su_timer_t* timers_remove(su_timer_queue_t h, size_t index) | |||
| 242 | { | |||
| 243 | struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; | |||
| 244 | struct timers_priv* _priv = *(void**)&h; su_timer_t** heap = _priv->_heap - 1; | |||
| 245 | su_timer_t* retval[1]; su_timer_t* e; size_t top, left, right, move; | |||
| 246 | if (index - 1 >= _priv->_used) return (((void*)0)); | |||
| 247 | move = _priv->_used--; timers_set(retval, 0, heap[index]); | |||
| 248 | for (top = index;; index = top) { | |||
| 249 | left = 2 * top; right = 2 * top + 1; | |||
| 250 | if (left >= move) break; if (right < move&& timers_less(heap[right], heap[left])) top = right; else top = left; timers_set(heap, index, heap[top]); | |||
| 251 | } | |||
| 252 | if (index == move) return *retval; e = heap[move]; | |||
| 253 | for (; index > 1; index = top) { | |||
| 254 | top = index / 2; | |||
| 255 | if (!timers_less(e, heap[top])) break; timers_set(heap, index, heap[top]); | |||
| 256 | } | |||
| 257 | timers_set(heap, index, e); return *retval; | |||
| 258 | } | |||
| 259 | static __inline su_timer_t* timers_get(su_timer_queue_t h, size_t index) | |||
| 260 | { | |||
| 261 | struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; | |||
| 262 | struct timers_priv* _priv = *(void**)&h; if (--index >= _priv->_used) return (((void*)0)); return _priv->_heap[index]; | |||
| 263 | } static __inline size_t timers_size(su_timer_queue_t const h) { struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; struct timers_priv* _priv = *(void**)&h; return _priv ? _priv->_size : 0; } static __inline size_t timers_used(su_timer_queue_t const h) { struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; struct timers_priv* _priv = *(void**)&h; return _priv ? _priv->_used : 0; } static int timers__less(void* h, size_t a, size_t b) { su_timer_t** _heap = h; return timers_less(_heap[a], _heap[b]); } static void timers__swap(void* h, size_t a, size_t b) { su_timer_t** _heap = h; su_timer_t* _swap = _heap[a]; timers_set(_heap, a, _heap[b]); timers_set(_heap, b, _swap); } static __inline void timers_sort(su_timer_queue_t h) { struct timers_priv { size_t _size, _used; su_timer_t* _heap[1]; }; struct timers_priv* _priv = *(void**)&h; if (_priv) su_smoothsort(_priv->_heap - 1, 1, _priv->_used, timers__less, timers__swap); } extern int const timers_dummy_heap; | |||
| 264 | ||||
| 265 | ||||
| 266 | #ifdef __clang__1 | |||
| 267 | #pragma clang diagnostic pop | |||
| 268 | #endif | |||
| 269 | ||||
| 270 | /**@internal Set the timer. | |||
| 271 | * | |||
| 272 | * @retval 0 when successful (always) | |||
| 273 | */ | |||
| 274 | su_inlinestatic inline int | |||
| 275 | su_timer_set0(su_timer_queue_t *timers, | |||
| 276 | su_timer_t *t, | |||
| 277 | su_timer_f wakeup, | |||
| 278 | su_wakeup_arg_t *arg, | |||
| 279 | su_time_t when, | |||
| 280 | su_duration_t offset) | |||
| 281 | { | |||
| 282 | int retval; | |||
| 283 | ||||
| 284 | if (timers == NULL((void*)0)) | |||
| 285 | return -1; | |||
| 286 | ||||
| 287 | if (SU_TIMER_IS_SET(t)((t)->sut_set != 0)) | |||
| 288 | timers_remove(timers[0], t->sut_set); | |||
| 289 | ||||
| 290 | t->sut_wakeup = wakeup; | |||
| 291 | t->sut_arg = arg; | |||
| 292 | t->sut_when = su_time_add(when, offset); | |||
| 293 | ||||
| 294 | if (timers_is_full(timers[0])) { | |||
| 295 | timers_resize(NULL((void*)0), timers, 0); | |||
| 296 | assert(!timers_is_full(timers[0]))((void) sizeof ((!timers_is_full(timers[0])) ? 1 : 0), __extension__ ({ if (!timers_is_full(timers[0])) ; else __assert_fail ("!timers_is_full(timers[0])" , "su_timer.c", 296, __extension__ __PRETTY_FUNCTION__); })); | |||
| 297 | if (timers_is_full(timers[0])) | |||
| 298 | return -1; | |||
| 299 | } | |||
| 300 | ||||
| 301 | retval = timers_add(timers[0], t); assert(retval == 0)((void) sizeof ((retval == 0) ? 1 : 0), __extension__ ({ if ( retval == 0) ; else __assert_fail ("retval == 0", "su_timer.c" , 301, __extension__ __PRETTY_FUNCTION__); })); | |||
| 302 | ||||
| 303 | return retval; | |||
| 304 | } | |||
| 305 | ||||
| 306 | /**@internal Validate timer @a t and return pointer to per-port timer tree. | |||
| 307 | * | |||
| 308 | * @retval pointer to pointer to timer tree when successful | |||
| 309 | * @retval NULL upon an error | |||
| 310 | */ | |||
| 311 | static | |||
| 312 | su_timer_queue_t *su_timer_queue(su_timer_t const *t, | |||
| 313 | int use_sut_duration, | |||
| 314 | char const *caller) | |||
| 315 | { | |||
| 316 | su_timer_queue_t *timers; | |||
| 317 | ||||
| 318 | if (t == NULL((void*)0)) { | |||
| 319 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t,((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 320, "%s(%p): %s\n" , caller, (void *)t, "NULL argument")) : (void)0) | |||
| 320 | "NULL argument"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 320, "%s(%p): %s\n" , caller, (void *)t, "NULL argument")) : (void)0); | |||
| 321 | return NULL((void*)0); | |||
| 322 | } | |||
| 323 | ||||
| 324 | if (use_sut_duration && t->sut_duration == 0) { | |||
| 325 | assert(t->sut_duration > 0)((void) sizeof ((t->sut_duration > 0) ? 1 : 0), __extension__ ({ if (t->sut_duration > 0) ; else __assert_fail ("t->sut_duration > 0" , "su_timer.c", 325, __extension__ __PRETTY_FUNCTION__); })); | |||
| 326 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t,((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 327, "%s(%p): %s\n" , caller, (void *)t, "timer without default duration")) : (void )0) | |||
| 327 | "timer without default duration"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 327, "%s(%p): %s\n" , caller, (void *)t, "timer without default duration")) : (void )0); | |||
| 328 | return NULL((void*)0); | |||
| 329 | } | |||
| 330 | ||||
| 331 | if (t->sut_deferrable) | |||
| 332 | timers = su_task_deferrable(t->sut_task); | |||
| 333 | else | |||
| 334 | timers = su_task_timers(t->sut_task); | |||
| 335 | ||||
| 336 | if (timers == NULL((void*)0)) { | |||
| 337 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t, "invalid timer"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 337, "%s(%p): %s\n" , caller, (void *)t, "invalid timer")) : (void)0); | |||
| 338 | return NULL((void*)0); | |||
| 339 | } | |||
| 340 | else if (timers_is_full(timers[0]) && timers_resize(NULL((void*)0), timers, 0) == -1) { | |||
| 341 | SU_DEBUG_1(("%s(%p): %s\n", caller, (void *)t, "timer queue failed"))((((su_log_global) != ((void*)0) && (su_log_global)-> log_init) == 0 ? 9 : (((su_log_global) != ((void*)0) && (su_log_global)->log_init > 1) ? (su_log_global)->log_level : su_log_default->log_level)) >= 1 ? (_su_llog((su_log_global ), 1, "su_timer.c", (const char *)__func__, 341, "%s(%p): %s\n" , caller, (void *)t, "timer queue failed")) : (void)0); | |||
| 342 | return NULL((void*)0); | |||
| 343 | } | |||
| 344 | ||||
| 345 | return timers; | |||
| 346 | } | |||
| 347 | ||||
| 348 | ||||
| 349 | /**Create a timer. | |||
| 350 | * | |||
| 351 | * Allocate and initialize an instance of su_timer_t. | |||
| 352 | * | |||
| 353 | * @param task a task for root object with which the timer will be associated | |||
| 354 | * @param msec the default duration of the timer in milliseconds | |||
| 355 | * | |||
| 356 | * @return A pointer to allocated timer instance, NULL on error. | |||
| 357 | */ | |||
| 358 | su_timer_t *su_timer_create(su_task_r const task, su_duration_t msec) | |||
| 359 | { | |||
| 360 | su_timer_t *retval; | |||
| 361 | ||||
| 362 | assert(msec >= 0)((void) sizeof ((msec >= 0) ? 1 : 0), __extension__ ({ if ( msec >= 0) ; else __assert_fail ("msec >= 0", "su_timer.c" , 362, __extension__ __PRETTY_FUNCTION__); })); | |||
| 363 | ||||
| 364 | if (!su_task_cmp(task, su_task_null)) | |||
| 365 | return NULL((void*)0); | |||
| 366 | ||||
| 367 | retval = su_zalloc(NULL((void*)0), sizeof(*retval)); | |||
| 368 | if (retval) { | |||
| 369 | su_task_copy(retval->sut_task, task); | |||
| 370 | retval->sut_duration = msec; | |||
| 371 | } | |||
| 372 | ||||
| 373 | return retval; | |||
| 374 | } | |||
| 375 | ||||
| 376 | ||||
| 377 | /** Destroy a timer. | |||
| 378 | * | |||
| 379 | * Deinitialize and free an instance of su_timer_t. | |||
| 380 | * | |||
| 381 | * @param t pointer to the timer object | |||
| 382 | */ | |||
| 383 | void su_timer_destroy(su_timer_t *t) | |||
| 384 | { | |||
| 385 | if (t) { | |||
| 386 | su_timer_reset(t); | |||
| 387 | su_task_deinit(t->sut_task); | |||
| 388 | su_free(NULL((void*)0), t); | |||
| 389 | } | |||
| 390 | } | |||
| 391 | ||||
| 392 | /** Check if the timer has been set. | |||
| 393 | * | |||
| 394 | * @param t pointer to a timer object | |||
| 395 | * | |||
| 396 | * @return Nonzero if set, zero if reset. | |||
| 397 | * | |||
| 398 | * @NEW_1_12_11 | |||
| 399 | */ | |||
| 400 | int su_timer_is_set(su_timer_t const *t) | |||
| 401 | { | |||
| 402 | return t && t->sut_set != 0; | |||
| 403 | } | |||
| 404 | ||||
| 405 | /**Return when the timer has been last expired. | |||
| 406 | * | |||
| 407 | * @param t pointer to a timer object | |||
| 408 | * | |||
| 409 | * @return Timestamp (as returned by su_time()). | |||
| 410 | * | |||
| 411 | * @note If the timer is running (set with su_timer_run()), the returned | |||
| 412 | * timestamp not the actual time but it is rather calculated from the | |||
| 413 | * initial timestamp. | |||
| 414 | * | |||
| 415 | * @NEW_1_12_11 | |||
| 416 | */ | |||
| 417 | su_time_t su_timer_latest(su_timer_t const *t) | |||
| 418 | { | |||
| 419 | su_time_t tv = { 0, 0 }; | |||
| 420 | ||||
| 421 | return t ? t->sut_when : tv; | |||
| 422 | } | |||
| 423 | ||||
| 424 | /** Set the timer for the given @a interval. | |||
| 425 | * | |||
| 426 | * Sets (starts) the given timer to expire after the specified duration. | |||
| 427 | * | |||
| 428 | * @param t pointer to the timer object | |||
| 429 | * @param wakeup pointer to the wakeup function | |||
| 430 | * @param arg argument given to the wakeup function | |||
| 431 | * @param interval duration in milliseconds before timer wakeup is called | |||
| 432 | * | |||
| 433 | * @return 0 if successful, -1 otherwise. | |||
| 434 | */ | |||
| 435 | int su_timer_set_interval(su_timer_t *t, | |||
| 436 | su_timer_f wakeup, | |||
| 437 | su_timer_arg_t *arg, | |||
| 438 | su_duration_t interval) | |||
| 439 | { | |||
| 440 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_set_interval"); | |||
| 441 | ||||
| 442 | return su_timer_set0(timers, t, wakeup, arg, su_now(), interval); | |||
| 443 | } | |||
| 444 | ||||
| 445 | /** Set the timer for the default interval. | |||
| 446 | * | |||
| 447 | * Sets (starts) the given timer to expire after the default duration. | |||
| 448 | * | |||
| 449 | * The timer must have an default duration. | |||
| 450 | * | |||
| 451 | * @param t pointer to the timer object | |||
| 452 | * @param wakeup pointer to the wakeup function | |||
| 453 | * @param arg argument given to the wakeup function | |||
| 454 | * | |||
| 455 | * @return 0 if successful, -1 otherwise. | |||
| 456 | */ | |||
| 457 | int su_timer_set(su_timer_t *t, | |||
| 458 | su_timer_f wakeup, | |||
| 459 | su_timer_arg_t *arg) | |||
| 460 | { | |||
| 461 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_set"); | |||
| 462 | ||||
| 463 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||
| 464 | } | |||
| 465 | ||||
| 466 | /** Set timer at known time. | |||
| 467 | * | |||
| 468 | * Sets the timer to expire at given time. | |||
| 469 | * | |||
| 470 | * @param t pointer to the timer object | |||
| 471 | * @param wakeup pointer to the wakeup function | |||
| 472 | * @param arg argument given to the wakeup function | |||
| 473 | * @param when time structure defining the wakeup time | |||
| 474 | * | |||
| 475 | * @return 0 if successful, -1 otherwise. | |||
| 476 | */ | |||
| 477 | int su_timer_set_at(su_timer_t *t, | |||
| 478 | su_timer_f wakeup, | |||
| 479 | su_wakeup_arg_t *arg, | |||
| 480 | su_time_t when) | |||
| 481 | { | |||
| 482 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_set_at"); | |||
| 483 | ||||
| 484 | return su_timer_set0(timers, t, wakeup, arg, when, 0); | |||
| 485 | } | |||
| 486 | ||||
| 487 | /** Set the timer for regular intervals. | |||
| 488 | * | |||
| 489 | * Run the given timer continuously, call wakeup function repeately in the | |||
| 490 | * default interval. If a wakeup call is missed, try to make it up (in other | |||
| 491 | * words, this kind of timer fails miserably if time is adjusted and it | |||
| 492 | * should really use /proc/uptime instead of gettimeofday()). | |||
| 493 | * | |||
| 494 | * While a continously running timer is active it @b must @b not @b be @b | |||
| 495 | * set using su_timer_set() or su_timer_set_at(). | |||
| 496 | * | |||
| 497 | * The timer must have an non-zero default interval. | |||
| 498 | * | |||
| 499 | * @param t pointer to the timer object | |||
| 500 | * @param wakeup pointer to the wakeup function | |||
| 501 | * @param arg argument given to the wakeup function | |||
| 502 | * | |||
| 503 | * @return 0 if successful, -1 otherwise. | |||
| 504 | */ | |||
| 505 | int su_timer_run(su_timer_t *t, | |||
| 506 | su_timer_f wakeup, | |||
| 507 | su_timer_arg_t *arg) | |||
| 508 | { | |||
| 509 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_run"); | |||
| 510 | ||||
| 511 | if (timers == NULL((void*)0)) | |||
| 512 | return -1; | |||
| 513 | ||||
| 514 | t->sut_running = run_at_intervals; | |||
| 515 | t->sut_woken = 0; | |||
| 516 | ||||
| 517 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||
| 518 | } | |||
| 519 | ||||
| 520 | /**Set the timer for regular intervals. | |||
| 521 | * | |||
| 522 | * Run the given timer continuously, call wakeup function repeately in the | |||
| 523 | * default interval. While a continously running timer is active it @b must | |||
| 524 | * @b not @b be @b set using su_timer_set() or su_timer_set_at(). Unlike | |||
| 525 | * su_timer_run(), set for ever timer does not try to catchup missed | |||
| 526 | * callbacks. | |||
| 527 | * | |||
| 528 | * The timer must have an non-zero default interval. | |||
| 529 | * | |||
| 530 | * @param t pointer to the timer object | |||
| 531 | * @param wakeup pointer to the wakeup function | |||
| 532 | * @param arg argument given to the wakeup function | |||
| 533 | * | |||
| 534 | * @return 0 if successful, -1 otherwise. | |||
| 535 | */ | |||
| 536 | int su_timer_set_for_ever(su_timer_t *t, | |||
| 537 | su_timer_f wakeup, | |||
| 538 | su_timer_arg_t *arg) | |||
| 539 | { | |||
| 540 | su_timer_queue_t *timers = su_timer_queue(t, 1, "su_timer_set_for_ever"); | |||
| 541 | ||||
| 542 | if (timers == NULL((void*)0)) | |||
| 543 | return -1; | |||
| 544 | ||||
| 545 | t->sut_running = run_for_ever; | |||
| 546 | t->sut_woken = 0; | |||
| 547 | ||||
| 548 | return su_timer_set0(timers, t, wakeup, arg, su_now(), t->sut_duration); | |||
| 549 | } | |||
| 550 | ||||
| 551 | /**Reset the timer. | |||
| 552 | * | |||
| 553 | * Resets (stops) the given timer. | |||
| 554 | * | |||
| 555 | * @param t pointer to the timer object | |||
| 556 | * | |||
| 557 | * @return 0 if successful, -1 otherwise. | |||
| 558 | */ | |||
| 559 | int su_timer_reset(su_timer_t *t) | |||
| 560 | { | |||
| 561 | su_timer_queue_t *timers = su_timer_queue(t, 0, "su_timer_reset"); | |||
| 562 | ||||
| 563 | if (timers == NULL((void*)0)) | |||
| 564 | return -1; | |||
| 565 | ||||
| 566 | if (SU_TIMER_IS_SET(t)((t)->sut_set != 0)) | |||
| 567 | timers_remove(timers[0], t->sut_set); | |||
| 568 | ||||
| 569 | t->sut_wakeup = NULL((void*)0); | |||
| 570 | t->sut_arg = NULL((void*)0); | |||
| 571 | t->sut_running = reset; | |||
| 572 | ||||
| 573 | return 0; | |||
| 574 | } | |||
| 575 | ||||
| 576 | /** @internal Check for expired timers in queue. | |||
| 577 | * | |||
| 578 | * The function su_timer_expire() checks a timer queue and executes and | |||
| 579 | * removes expired timers from the queue. It also calculates the time when | |||
| 580 | * the next timer expires. | |||
| 581 | * | |||
| 582 | * @param timers pointer to the timer queue | |||
| 583 | * @param timeout timeout in milliseconds [IN/OUT] | |||
| 584 | * @param now current timestamp | |||
| 585 | * | |||
| 586 | * @return | |||
| 587 | * The number of expired timers. | |||
| 588 | */ | |||
| 589 | int su_timer_expire(su_timer_queue_t * const timers, | |||
| 590 | su_duration_t *timeout, | |||
| 591 | su_time_t now) | |||
| 592 | { | |||
| 593 | su_timer_t *t; | |||
| 594 | su_timer_f f; | |||
| 595 | int n = 0; | |||
| 596 | ||||
| 597 | if (timers_used(timers[0]) == 0) | |||
| ||||
| 598 | return 0; | |||
| 599 | ||||
| 600 | while ((t = timers_get(timers[0], 1))) { | |||
| 601 | if (SU_TIME_CMP(t->sut_when, now)su_time_cmp(t->sut_when, now) > 0) { | |||
| 602 | su_duration_t at = su_duration(t->sut_when, now); | |||
| 603 | ||||
| 604 | if (at < *timeout || *timeout < 0) | |||
| 605 | *timeout = at; | |||
| 606 | ||||
| 607 | break; | |||
| 608 | } | |||
| 609 | ||||
| 610 | timers_remove(timers[0], 1); | |||
| 611 | ||||
| 612 | f = t->sut_wakeup; t->sut_wakeup = NULL((void*)0); | |||
| 613 | assert(f)((void) sizeof ((f) ? 1 : 0), __extension__ ({ if (f) ; else __assert_fail ("f", "su_timer.c", 613, __extension__ __PRETTY_FUNCTION__); })); | |||
| 614 | ||||
| 615 | if (t->sut_running == run_at_intervals) { | |||
| 616 | while (t->sut_running == run_at_intervals && | |||
| 617 | t->sut_set == 0 && | |||
| 618 | t->sut_duration > 0) { | |||
| 619 | if (su_time_diff(t->sut_when, now) > 0) { | |||
| 620 | su_timer_set0(timers, t, f, t->sut_arg, t->sut_when, 0); | |||
| 621 | break; | |||
| 622 | } | |||
| 623 | t->sut_when = su_time_add(t->sut_when, t->sut_duration); | |||
| 624 | t->sut_woken++; | |||
| 625 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg), n++; | |||
| 626 | } | |||
| 627 | } | |||
| 628 | else if (t->sut_running == run_for_ever) { | |||
| 629 | t->sut_woken++; | |||
| 630 | t->sut_when = now; | |||
| 631 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg), n++; | |||
| 632 | if (t->sut_running == run_for_ever && t->sut_set == 0) | |||
| 633 | su_timer_set0(timers, t, f, t->sut_arg, now, t->sut_duration); | |||
| 634 | } | |||
| 635 | else { | |||
| 636 | t->sut_when = now; | |||
| 637 | f(su_root_magic(su_task_root(t->sut_task)), t, t->sut_arg); n++; | |||
| 638 | } | |||
| 639 | } | |||
| 640 | ||||
| 641 | return n; | |||
| 642 | } | |||
| 643 | ||||
| 644 | ||||
| 645 | /** Calculate duration in milliseconds until next timer expires. */ | |||
| 646 | su_duration_t su_timer_next_expires(su_timer_queue_t const *timers, | |||
| 647 | su_time_t now) | |||
| 648 | { | |||
| 649 | su_duration_t next = SU_DURATION_MAXSU_DURATION_MAX; | |||
| 650 | ||||
| 651 | su_timer_t const *t; | |||
| 652 | ||||
| 653 | t = timers ? timers_get(timers[0], 1) : NULL((void*)0); | |||
| 654 | ||||
| 655 | if (t) { | |||
| 656 | next = su_duration(t->sut_when, now); | |||
| 657 | if (next < 0) | |||
| 658 | next = 0; | |||
| 659 | } | |||
| 660 | ||||
| 661 | return next; | |||
| 662 | } | |||
| 663 | ||||
| 664 | /** | |||
| 665 | * Resets and frees all timers belonging to a task. | |||
| 666 | * | |||
| 667 | * The function su_timer_destroy_all() resets and frees all timers belonging | |||
| 668 | * to the specified task in the queue. | |||
| 669 | * | |||
| 670 | * @param timers pointer to the timers | |||
| 671 | * @param task task owning the timers | |||
| 672 | * | |||
| 673 | * @return Number of timers reset. | |||
| 674 | */ | |||
| 675 | int su_timer_reset_all(su_timer_queue_t *timers, su_task_r task) | |||
| 676 | { | |||
| 677 | size_t i; | |||
| 678 | int n = 0; | |||
| 679 | ||||
| 680 | if (!timers) | |||
| 681 | return 0; | |||
| 682 | ||||
| 683 | timers_sort(timers[0]); | |||
| 684 | ||||
| 685 | for (i = timers_used(timers[0]); i > 0; i--) { | |||
| 686 | su_timer_t *t = timers_get(timers[0], i); | |||
| 687 | ||||
| 688 | if (su_task_cmp(task, t->sut_task)) | |||
| 689 | continue; | |||
| 690 | ||||
| 691 | timers_remove(timers[0], i); | |||
| 692 | ||||
| 693 | su_free(NULL((void*)0), t); | |||
| 694 | n++; | |||
| 695 | } | |||
| 696 | ||||
| 697 | if (!timers_used(timers[0])) | |||
| 698 | free(timers->private), timers->private = NULL((void*)0); | |||
| 699 | ||||
| 700 | return n; | |||
| 701 | } | |||
| 702 | ||||
| 703 | /** Get the root object owning the timer. | |||
| 704 | * | |||
| 705 | * Return pointer to the root object owning the timer. | |||
| 706 | * | |||
| 707 | * @param t pointer to the timer | |||
| 708 | * | |||
| 709 | * @return Pointer to the root object. | |||
| 710 | */ | |||
| 711 | su_root_t *su_timer_root(su_timer_t const *t) | |||
| 712 | { | |||
| 713 | return t ? su_task_root(t->sut_task) : NULL((void*)0); | |||
| 714 | } | |||
| 715 | ||||
| 716 | ||||
| 717 | /** Change timer as deferrable (or as undeferrable). | |||
| 718 | * | |||
| 719 | * A deferrable timer is executed after the given timeout, however, the task | |||
| 720 | * tries to avoid being woken up only because the timeout. Deferable timers | |||
| 721 | * have their own queue and timers there are ignored when calculating the | |||
| 722 | * timeout for epoll()/select()/whatever unless the timeout would exceed the | |||
| 723 | * maximum defer time. The maximum defer time is 15 seconds by default, but | |||
| 724 | * it can be modified by su_root_set_max_defer(). | |||
| 725 | * | |||
| 726 | * @param t pointer to the timer | |||
| 727 | * @param value make timer deferrable if true, undeferrable if false | |||
| 728 | * | |||
| 729 | * @return 0 if succesful, -1 upon an error | |||
| 730 | * | |||
| 731 | * @sa su_root_set_max_defer() | |||
| 732 | * | |||
| 733 | * @NEW_1_12_7 | |||
| 734 | */ | |||
| 735 | int su_timer_deferrable(su_timer_t *t, int value) | |||
| 736 | { | |||
| 737 | if (t == NULL((void*)0) || su_task_deferrable(t->sut_task) == NULL((void*)0)) | |||
| 738 | return errno(*__errno_location ()) = EINVAL22, -1; | |||
| 739 | ||||
| 740 | t->sut_deferrable = value != 0; | |||
| 741 | ||||
| 742 | return 0; | |||
| 743 | } |